Психология развития: методы исследования - страница 106

Шрифт
Интервал

стр.

и выявить значимость на уровне 0,05; однако вполне может оказаться, что истинный уровень значимости совершенно иной.

Есть и еще одна проблема, связанная с множественностью t. Допустим, что мы усложнили наше исследование не добавлением уровнейяезависимой переменной, а введением дополнительных независимых переменных. Помимо возраста и пола как детерминант агрессии мы могли бы изучать эффект обстановки игровой комнаты, разницу между поведением в группе и на улице, влияние показа половине детей агрессивного мультика и т. д. Ясно, что чем больше независимых переменных, тем большее количество t нужно подсчитать. Но проблема состоит не только в избытке показателей L При изучении множественных переменных всегда существует вероятность зависимости эффекта одной переменной от уровня другой. Иными словами, возможно взаимодействие переменных. Эффекты взаимодействия необходимо выявить, но это довольно трудно сделать, используя только г-критерий.

Чаще всего в качестве альтернативы использования t-критерия проводят дисперсионный анализ (ДА). По существу, ДА расширяет возможности г-критерия на те случаи, когда имеется более двух средних. Метод расчета здесь иной и более

Возможно, проще всего увидеть то, откуда появляется такая вероятность, это задаться вопросом, ка-коны шансы не получить случпнный результат. При применении олной статистической проверки вероятность избежать такой ошибки составляет 0,95. При проведении диух отдельных проверок вероятность избежать ошибки определяется значением двух значений вероятности, то есть 0,952. При проведении 15 проверок эта вероятность составит 0,9515 или 0>T4G. Поэтому кероятность того, что мы получим хотя бы один случайный значимый результат, равна 1 - 0,46.

сложный, чем метод расчета t, и в этой книге мы даже не будем пытаться его описать. Однако логика, лежащая в основе обоих приемов, одинакова: мы проверяем значимость, определяя, насколько первичная дисперсия, связанная со сравниваемыми группами, превышает вторичную дисперсию или дисперсию ошибки. Статистический показатель, являющийся результатом этой проверки, обозначается буквой F, и значимость его, как и значимость t, устанавливается по стандартным таблицам, которые можно найти в любом учебнике по статистике.

Рассмотрим, как можно было бы применить ДА в исследовании агрессии. У нас две независимые переменные: возраст и пол. Чтобы более наглядно продемонстрировать преимущества ДА перед использованием t, предположим, что в действительности, переменная возраста имеет б уровней, а не 2, как указанно в табл. 7.1. Применение ДА дает показатель F д.ля каждой из независимых переменных, или значения главных эффектов. Если для пола F значим, тогда в отношении этой переменной наши действия завершены; поскольку переменная пола имеет только два уровня, мы можем просто посмотреть на средние значения, чтобы определить, в чем состоит эффект. Значимый главный эффект для возраста — более сложный случай. Здесь показатель F основан на одновременном сравнении всех шести возрастных групп, а установление значимости подразумевает, что значим результат, по меньшей мере, одного парного сравнения. Тогда нам нужно использовать дополнительные критерии с тем, чтобы определить, результат какого из сравнений (или результаты каких сравнений) обладает значимостью. Эти дополнительные критерии сходны с f-критерием, однако их подсчет несколько проще и производится, только если общий показатель Освидетельствует о наличии значимого эффекта.

Результатом ДА является также третий показатель F — для взаимодействия между возрастом и иолом. В целом, ДА дает столько F, сколько в исследовании существует возможных комбинаций независимых переменных. Если, к примеру, в исследовании 3 независимые переменные, результатом ДА будет четыре F, указывающих на взаимодействие: по одному на каждое парное сочетание и одно для тройного сочетания. Как и в случае со значимым главным эффектом, значимость Взаимодействий можно проверять при помощи специальных критериев для выяснения основы эффекта взаимодействия.

Для выбора статистического показателя важен еще один аспект исследовательского плана. До этого момента мы говорили в основном о межсубъектных планах — то есть случаях, когда данные каждого испытуемого попадают только в одну категорию сравниваемых условии или групп. Но, как мы знаем из главы 3, многие независимые переменные изучаются при помощи внутрисубъектных планов, в которых данные каждого испытуемого попадают в категорию данных по каждому из экспериментальных условий. Что происходит со статистическими показателями, когда каждый испытуемый представлен в каждом из условий?


стр.

Похожие книги