Ответ довольно прост: мы переходим от межсубъектных критериев, которые рассматривались до этого момента, к соответствующим внутрисубъектным критериям. В действительности, для каждого межсубъектного критерия, о которых мы говорили выше, существует свой внутрисубьектный аналог. К примеру, есть внут-рисубъектньш f-критерий, а также внутрисубъектный дисперсионный анализ или дисперсионный анализ с повторными измерениями.
Таблица 7.3 IQ и результаты по тесту достижения в выборке 5-классников
Испытуемый | Щ | Тест достижений |
1 | 82 | 22 |
2 | 85 | 18 |
3 | 90 | 43 |
4 | 92 | 28 |
5 | 95 | 23 |
6 | 99 | 24 |
7 | 101 | 48 |
8 | 102 | 30 |
9 | 104 | 56 |
10 | 107 | 35 |
11 | 108 | 38 |
12 | 112 | 46 |
13 | 114 | 27 |
14 | 116 | 54 |
15 | 124 | 50 |
16 | 140 | 60 . |
Кроме того, существуют непараметрические критерии, подходящие для виутрисубъектных данных (например, критерий изменения Макнемара, использование которого заключается в измерении нескольких хи-квадратов). Логика этих статистических процедур сходна с логикой использования межсубъектных критериев; однако в большинстве внут-рисубъектных проверок анализируется действительная разница между показателями (например, результаты некоего испытуемого в условиях 1 минус его же результаты в условиях 2). Поскольку в центре вниманий находятся показатели различия, данные критерии применимы не только для исследовательских планов с реальными повторными измерениями, но и для случаев, когда для каждого испытуемого в одних условиях подбирается соответствующий испытуемый в других условиях.
Следует сделать еще одно замечание, касающееся внутрисубъектных показателей, Оно повторяет то, что было сказано в главе 3 при обсуждении относительных преимуществ внутри- и межсубъектных планов. Тогда мы отметили, что внутри-субъектные критерии, как правило, обладают большей мощностью, чем аналогичные межсубъектные критерии.
Рис. 7.3. Диаграммы рассеяния, иллюстрирующие корреляции разного уровня
Это обусловлено уменьшением вторичной дисперсии, связанной с индивидуальными различиями испытуемых. Если в каждое из экспериментальных условий ставятся одни и те же испытуемые, вероятность внесения нежелательной дисперсии в результаты группового сравнения, обусловленные индивидуальными различиями, снижается. Большая мощность — одно из оснований для выбора между внутрисубъектными и межсубъектными подходами.
До этого момента основное внимание уделялось процедуре выявления различий между группами. Однако это не единственная область применения статистических процедур. Возьмем, к примеру, исследование, в котором были получены данные, представленные в табл. 7.3. Нас интересует вопрос, есть ли связь между IQ и успешностью выполнения стандартного теста достижения. Что нам нужно сделать?
Для данных из табл. 7.3 подходит корреляционный статистический показатель. Корреляция — это мера связи между двумя переменными. Как мы узнали из главы 3, значение корреляционного показателя находится в пределах от +1 до -1. Коэффициент корреляции равный +1 свидетельствует о наличии абсолютно положительной связи между переменными, коэффициент корреляции равный 0 свидетельствует о полном отсутствии связи, а коэффициент корреляции равный -1 указывает на наличие абсолютно отрицательной связи. Эти варианты иллюстрируют графические изображения на рис. 7.3. Корреляционный показатель отличный от нуля свидетельствует о положительной или отрицательной связи, при этом сила связи увеличивается с приближением значения к + 1 или -1.
О чем же говорят данные, представленные в табл. 7.3? Для определения меры связи мы должны сначала выбрать соответствующий корреляционный показатель, поскольку для вычисления корреляции существует множество разных методов. Как и в случае с логическими критериями, выбор метода зависит от наших предположений относительно характера данных. Чаще всего используются два показателя: коэффициент корреляции произведения моментов Пирсона и коэффициент корреляции рангов Спирмена. Статистический показатель Пирсона — это параметрический критерий, использование которого основано на тех же допущениях, что и использование остальных параметрических критериев — а именно на допущении, что измерение происходило по шкале интервалов или отношений, а данные распределены по закону нормального распределения