Лекции по физике 6 - страница 33

Шрифт
Интервал

стр.

который дви­жется со скоростью v. Наконец, имеющаяся сила ничего не говорит нам, пока мы не знаем, что происходит, когда сила ускоряет что-то; нам необходимо знать закон движения, кото­рый говорит, что сила равна скорости изменения импульса. {Помните? Об этом говорилось в начале курса.) Мы даже вклю­чили эффекты теории относительности, записав импульс в виде р=m>0vЦ(1-v>2/c>2).

Но если мы действительно хотим законченности, нам сле­дует добавить еще один закон — закон тяготения Ньютона>? и мы поставили его в конце.

Итак, в одной небольшой таблице мы собрали все фундамен­тальные законы классической физики, даже хватило места выписать их словами и еще с некоторым излишком. Это вели­кий момент. Мы покорили большую высоту. Мы на вершине К-2, мы почти подготовлены покорить теперь Эверест, т. е. квантовую механику.

В основном мы пытались научиться понимать эти уравнения. А теперь, когда мы собрали их воедино, мы собираемся разо­браться, что означают эти уравнения, что нового скажут они о том, чего мы еще не поняли. Мы много потрудились, чтобы вскарабкаться к этой точке. Это потребовало больших усилий, а теперь мы собираемся начать приятное путешествие — спуск с горы в долину, там мы увидим все, чего мы достигли.

§ 4. Передвигающееся поле

А теперь о новых следствиях. Они возникают из сопоставле­ния всех уравнений Максвелла. Сначала давайте посмотрим, что произошло бы в особенно простом случае. Предположим, что изменяется только одна координата у всех величин, т. е. рассмотрим задачу одного измерения.

Случай этот показан на фиг. 18.3. Перед нами заряженный лист, помещенный на плоскости yz. Сначала он неподвижен, а затем мгновенно приобретает скорость и в направлении у и движется с этой постоянной скоростью. Вас может беспокоить присутствие такого «бесконечного» ускорения, но фактически это не имеет значения; просто представьте себе, что скорость достигает значения и очень быстро. Итак, мы внезапно полу­чаем поверхностный ток J (Jток на единицу ширины в z-направлении). Чтобы упростить проблему, предположим, что имеется еще неподвижный лист, заряженный противоположно и наложенный на плоскость yz, так что электростатические эф­фекты отсутствуют.


Фиг. 18.3. Бесконечная заряженная плоскость неожи­данно приводится в поступательное движение.

Возникают магнитное и электрическое поля, распространяю­щиеся от плоскости с постоянной скоростью.

Представим себе также (хотя на фигуре мы показали лишь то, что происходит в конечной области), что лист простирается до бесконечности в направлениях ±у и ±z. Другими словами, здесь мы имеем случай, когда тока нет, а затем внезапно появляется однородный лист с током. Что же произойдет?

Мы знаем, что, когда имеется лист с током в положительном y-направлении, возникнет магнитное поле, направленное в отрицательном z-направлении при х>0 и в положительном z-направлении при х<0. Мы могли бы найти величину В, используя тот факт, что контурный интеграл от магнитного поля будет равен току на e>0с>2. Мы получили бы, что В-J/2e>0с>2 (поскольку ток I в полосе шириной wравен Jw, а контурный интеграл от В есть w).

Так мы определяем поле вблизи листа для малых значений х, но, поскольку мы считаем лист бесконечным, хотелось бы получить с помощью тех же рассуждений магнитное поле подальше (для больших значений х). Однако это означало бы, что в момент, когда мы включаем ток, магнитное поле внезапно изменяется повсюду от нуля до конечной величины. Но погодите! При внезапном изменении магнитного поля возникают огром­ные электрические эффекты. (Как бы оно ни менялось, электри­ческие эффекты возникнут.) Так что в результате движения за­ряженного листа создается меняющееся магнитное поле и, следовательно, должны возникнуть электрические эффекты.



Фиг. 18.4. Зависимость вели­чины В (или E) от х.а — спустя время tпосле начала движения заряженной плоскости; б — поля от заряженной плоскости, начавшей двигаться в момент t= Т в сторону отрицательных у; в сумма а и б.

Если электрические поля образовались, они должны начинаться с нуля и меняться к какому-то значению. Возникнет некая производная


стр.

Похожие книги