Лекции по физике 6 - страница 33
Но если мы действительно хотим законченности, нам следует добавить еще один закон — закон тяготения Ньютона>? и мы поставили его в конце.
Итак, в одной небольшой таблице мы собрали все фундаментальные законы классической физики, даже хватило места выписать их словами и еще с некоторым излишком. Это великий момент. Мы покорили большую высоту. Мы на вершине К-2, мы почти подготовлены покорить теперь Эверест, т. е. квантовую механику.
В основном мы пытались научиться понимать эти уравнения. А теперь, когда мы собрали их воедино, мы собираемся разобраться, что означают эти уравнения, что нового скажут они о том, чего мы еще не поняли. Мы много потрудились, чтобы вскарабкаться к этой точке. Это потребовало больших усилий, а теперь мы собираемся начать приятное путешествие — спуск с горы в долину, там мы увидим все, чего мы достигли.
§ 4. Передвигающееся поле
А теперь о новых следствиях. Они возникают из сопоставления всех уравнений Максвелла. Сначала давайте посмотрим, что произошло бы в особенно простом случае. Предположим, что изменяется только одна координата у всех величин, т. е. рассмотрим задачу одного измерения.
Случай этот показан на фиг. 18.3. Перед нами заряженный лист, помещенный на плоскости yz. Сначала он неподвижен, а затем мгновенно приобретает скорость и в направлении у и движется с этой постоянной скоростью. Вас может беспокоить присутствие такого «бесконечного» ускорения, но фактически это не имеет значения; просто представьте себе, что скорость достигает значения и очень быстро. Итак, мы внезапно получаем поверхностный ток J (J— ток на единицу ширины в z-направлении). Чтобы упростить проблему, предположим, что имеется еще неподвижный лист, заряженный противоположно и наложенный на плоскость yz, так что электростатические эффекты отсутствуют.
Фиг. 18.3. Бесконечная заряженная плоскость неожиданно приводится в поступательное движение.
Возникают магнитное и электрическое поля, распространяющиеся от плоскости с постоянной скоростью.
Представим себе также (хотя на фигуре мы показали лишь то, что происходит в конечной области), что лист простирается до бесконечности в направлениях ±у и ±z. Другими словами, здесь мы имеем случай, когда тока нет, а затем внезапно появляется однородный лист с током. Что же произойдет?
Мы знаем, что, когда имеется лист с током в положительном y-направлении, возникнет магнитное поле, направленное в отрицательном z-направлении при х>0 и в положительном z-направлении при х<0. Мы могли бы найти величину В, используя тот факт, что контурный интеграл от магнитного поля будет равен току на e>0с>2. Мы получили бы, что В-J/2e>0с>2 (поскольку ток I в полосе шириной wравен Jw, а контурный интеграл от В есть 2Вw).
Так мы определяем поле вблизи листа для малых значений х, но, поскольку мы считаем лист бесконечным, хотелось бы получить с помощью тех же рассуждений магнитное поле подальше (для больших значений х). Однако это означало бы, что в момент, когда мы включаем ток, магнитное поле внезапно изменяется повсюду от нуля до конечной величины. Но погодите! При внезапном изменении магнитного поля возникают огромные электрические эффекты. (Как бы оно ни менялось, электрические эффекты возникнут.) Так что в результате движения заряженного листа создается меняющееся магнитное поле и, следовательно, должны возникнуть электрические эффекты.
Фиг. 18.4. Зависимость величины В (или E) от х.а — спустя время tпосле начала движения заряженной плоскости; б — поля от заряженной плоскости, начавшей двигаться в момент t= Т в сторону отрицательных у; в — сумма а и б.
Если электрические поля образовались, они должны начинаться с нуля и меняться к какому-то значению. Возникнет некая производная