Лекции по физике 6 - страница 35

Шрифт
Интервал

стр.

вблизи заряженного листа. Кроме того, для любой петли, нарисованной вне листа, но позади волнового фронта, нет ни ротора В, ни j или меняющегося поля Е, так что уравнение там справедливо. А теперь посмотрим, что происходит в петле Г>1, которая пересекает волновой фронт, как показано на фиг. 18.5. Здесь нет токов, поэтому уравнение (18.11) можно записать в интегральной форме так:


(18.12)

Контурный интеграл от В есть просто произведение В на L. Скорость изменения потока Е возникает только благодаря продвигающемуся волновому фронту. Область внутри Г>1, где Е не равно нулю, увеличивается со скоростью vL. Правая сто­рона (18.12) тогда равна vLE. Уравнение это приобретает вид

(18.13)

Мы имеем решение, когда поля В и Е постоянны за фрон­том, причем оба направлены под прямыми углами к направле­нию, в котором движется фронт, и под прямыми углами друг к другу. Уравнения Максвелла определяют отношение Е к В. Из (18.10) и (18.13) получаем


Но одну минутку! Мы нашли два разных выражения для отно­шения Е/В. Может ли такое поле, как мы описываем, дей­ствительно существовать? Имеется лишь одна скорость v, для которой оба уравнения могут быть справедливы, а именно v= с. Волновой фронт должен передвигаться со скоростью с. Вот пример, когда электрическое возмущение от тока распро­страняется с определенной конечной скоростью с.

А теперь спросим, что произойдет, если мы внезапно оста­новим заряженный лист, после того как он двигался в течение короткого времени Т? Увидеть, что случится, можно с помощью принципа суперпозиции. У нас был ток, равный нулю, а затем его внезапно включали. Мы знаем решение для этого случая. Теперь мы собираемся добавить другой ряд полей. Мы берем другой заряженный лист и внезапно начинаем его двигать в противоположном направлении с той же скоростью, только спустя время Т после начала движения первого листа. Полный ток от двух листов вместе сначала равен нулю, потом он вклю­чается в течение времени Т, затем выключается снова, потому что оба тока погашаются. Так мы получаем прямоугольный «импульс» тока.

Новый отрицательный ток создает такие же поля, как и по­ложительный, но с обратными знаками и, разумеется, с запаздыванием во времени Т. Волновой фронт по-прежнему движется со скоростью с. В момент времени tон достигает расстояния x=±c(t- Т) (см. фиг. 18.4, б). Итак, мы имеем два «куска» поля, перемещающихся со скоростью с (см. фиг. 18.4, а и б). Соединенные поля будут такими, как показано на фиг. 18.4, в. Для х>сt поля равны нулю, между х=с(t-Т) и x=ctони постоянны (со значениями, которые мы нашли выше), и для x(t-Т) они снова равны нулю.

Короче говоря, мы получаем маленький кусочек поля тол­щиной сТ, который покинул заряженный лист и передвигается через все пространство сам по себе. Поля «оторвались»; они распространяются свободно в пространстве и больше не связаны каким-то образом с источником. Куколка превратилась в бабочку!

Как же эти совокупности электрического и магнитного полей могут сохранять сами себя? Ответ: За счет сочетания эффектов из закона Фарадея СXE=-dВ/dt и нового члена, добавлен­ного Максвеллом c>2СX B=dE/dt. Они не могут не сохранять себя. Предположим, что магнитное поле исчезло бы. Тогда появилось бы меняющееся магнитное поле, которое создавало бы электрическое поле. Если бы это электрическое поле попы­талось исчезнуть, то изменяющееся электрическое поле создало бы магнитное поле снова. Следовательно, за счет непрерывного взаимодействия — перекачивания туда и обратно от одного поля к другому — они должны сохраняться вечно. Они не могут исчезнуть. Они сохраняются, вовлеченные в общий танец — одно поле создает другое, а второе создает первое,— распространяясь все дальше и дальше в пространстве.

§ 5. Скорость света

У нас есть волна, которая уходит от материального источ­ника и движется со скоростью с (это скорость света). Вернемся немного назад. Исторически не было известно, что коэффициент cв уравнениях Максвелла тот же, что и скорость распростра­нения света. Это была просто константа в уравнениях. Мы на­звали ее с c самого начала, так как знали, что в конце концов должно получиться. Мы не думаем, что было бы разумнее сна­чала заставить вас выучить формулы с разными константами, а затем вернуться обратно и подставить


стр.

Похожие книги