Не стану более задерживаться на этом вопросе, равно как и на критике несовершенств и искажений в случайно попавшей мне в руки брошюре. Можно было бы привести и другие примеры — они стали возникать в большом количестве, как головастики в весенних водах, и в общем не заслуживали бы внимания. Но любой землепашец знает, сколь опасна сорная трава на культурной ниве. Если своевременно не принимать мер, она может агрессивно распространиться, забивая собою злаки. И вот что хотелось бы подчеркнуть: ложные идеи способны исказить поле сознания, стихийная цепная реакция их — породить ложные тенденции в нашей жизни. А это уже не может не тревожить.
Я думаю, любого специалиста не могут не заботить дальнейшие судьбы той области, в которой протекает его деятельность, её кадрового обеспечения. Люди, некомпетентные в математике, но имеющие отношение к организации научных исследований и подготовке специалистов, вообще к системе просвещения и образования, питаясь «чтивом», подобным приведённому выше, могут невольно оказаться дезориентированными и совершать ошибочные действия, чреватые далеко идущими последствиями.
Вопрос о том, например, чем следует заниматься, стоит для самих математиков, быть может, острее, чем для представителей других областей знания. Возникшая в свое время в ответ на практические нужды, математика имела, имеет и будет иметь своей основной задачей изучение окружающего нас материального мира с целью его дальнейшего освоения человеком. В то же время у неё, разумеется, есть и своя внутренняя логика развития, в силу которой учёные создают весьма отвлечённые теоретические построения, не связанные непосредственно с окружающей нас действительностью и не сразу находящие для себя в ней приложения.
Мне знакомо восхищение замечательной стройностью и своеобразной красотой подобного рода построений. Однако оно не может служить единственным оправданием их существования. Математика не музыка, красота которой доставляет радость и широкой аудитории немузыкантов. Эстетическое наслаждение, порождаемое лишь математической красотой, способен испытать только узкий круг специалистов, и создавать ценности исключительно в этом смысле — значит заведомо искажать высокое предназначение математики, замкнув её только на себя и тем самым фактически заставив работать на холостом ходу.
Я не собираюсь утверждать, что обладающие внутренней стройностью, но лишённые непосредственного практического значения разделы математики не имеют права на существование; они включены в самую ткань науки, иссечение которой могло бы привести к нарушению всего её организма. Кроме того, оказывается, что некоторые отделы математики, лишённые практических приложений в течение многих веков, позже находят такие приложения. Классическим примером служат кривые второго порядка, созданные в древности из внутренних потребностей «чистой» науки и нашедшие лишь позже очень важное применение. С другой же стороны, некоторые разделы математики, посвящённые лишь её внутренним проблемам, оставаясь «вещью в себе», постепенно вырождаются и почти наверняка в конце концов оказываются ни для чего не нужными. Думаю, что для впавших в грех таких математических упражнений никакие «философские» обоснования «формальной теории» не послужат ни оправданием, ни утешением. Сказанное, по-видимому, имеет и прямое отношение к «философии для философии» (быть может, кто-нибудь пустит выражение: «формальная философия»? Именно так, наверное, следовало бы окрестить вышеприведённые мудрствования, претендующие на «философские основания математики»). Однако дело философии не в том, чтобы созерцательно объяснять мир, и не в том, чтобы умозрительно изобретать «философские принципы» или «основания» (например, математики), а в том, чтобы исследовать предметную деятельность, служа одновременно методологической основой её преобразования и руководством к практическому действию (в частности, к выбору тематики исследования).
Итак, принимая во внимание высокую степень развития сегодняшнего математического аппарата, а также тот факт, что прогресс математической науки стимулируется не только внешними по отношению к ней побудительными причинами, но и внутренними факторами, вопрос о выборе тематики исследований становится для математиков весьма тревожным. Я считаю, что если не все, то во всяком случае многие из них должны в своей работе обращаться к первоисточникам, то есть к приложениям математики. Это необходимо для того, чтобы влить новую свежую струю в научные исследования, чтобы более активно применять весьма эффективные математические методы на практике.