Жизнеописание Л. С. Понтрягина, математика, составленное им самим - страница 149

Шрифт
Интервал

стр.

, отличающийся повышенной степенью абстракции и предполагающий определённую математическую культуру, которой школьники не обладают и не могут обладать. Её нет и у большинства преподавателей. Что же в итоге произошло? Искусственное усложнение учебного материала и непомерная перегрузка учащихся, внедрение формализма в содержание обучения и отрыв его от жизни, от практики. Многие важнейшие понятия школьного курса математики (такие, как понятие функции, уравнения, вектора и т.д.) стали труднодоступными для сознательного усвоения их учащимися.

На определённом этапе развития математики высокоабстрактная теоретико-множественная концепция ввиду её новизны стала модной, а увлечение ею — превалировать над конкретными исследованиями. Но теоретико-множественный подход — лишь удобный для математиков-профессионалов язык научных исследований. Действительная же тенденция развития математики заключается в её движении к конкретным задачам, к практике. Современные школьные учебники по математике поэтому — шаг назад в трактовке этой науки, они несостоятельны по своему существу, поскольку выхолащивают суть математического метода.

Нет ничего предосудительного в том, чтобы в средней школе употреблялось «множество» как слово русского языка. Так, определение окружности можно дать в двух вариантах. Первый: «Окружность состоит из всех точек плоскости, отстоящих от заданной точки на одном и том же расстоянии». Второй: «Окружность есть множество всех точек, находящихся на заданном расстоянии от заданной точки». Второй вариант определения окружности ничем не хуже и не лучше первого. И слово «множество» совершенно безвредно, а, в общем, бесполезно. Но в модернизированных учебниках и программах оно возведено в ранг научного термина, и это повлекло за собой уже серьёзные последствия. Сразу же появились и такие понятия, как «пересечение множеств», «объединение множеств», «включение множеств». И вводятся соответствующие значки. Кажущиеся нам, математикам-профессионалам, очень понятными, эти выражения и значки не так уж легко воспринимаются учениками, а главное — они не нужны для понимания школьных истин математики.

Стремление к большей общности, свойственное новым программам, и повсеместное употребление «множества» как научного термина выражается, например, в том, что геометрическая фигура определяется как «множество точек». А так как в теории множеств два множества могут быть равными, лишь полностью совпадая, то слово «равенство» уже не применимо к двум различным треугольникам. Это слово заменяется другим, не свойственным русскому языку, термином «конгруэнтность». Этот термин не употребляется в практике. Никакой строитель не будет говорить о двух «конгруэнтных балках» (или закройщик из ателье о «конгруэнтных кусках ткани»), а будет говорить о равных, или одинаковых балках (кусках ткани).

Выше мы привели неудобоваримое определение вектора. Очень характерный пример того, как относительно простое, интуитивно ясное понятие преподносится педагогически абсурдным способом. А получилось оно у авторов таким ввиду того, что прежнее определение не укладывается в теоретико-множественную концепцию. Ведь вектор не есть «множество». И равенство векторов не есть теоретико-множественное равенство. Потому в современном школьном курсе геометрии вектор и предстал как «параллельный сдвиг пространства», а сложение двух векторов — как «последовательное применение двух параллельных сдвигов». Определения эти не только чрезвычайно сложны — они совершенно не соответствуют общепринятому аппарату физики, механики, всех технических наук.

Так же обстоит дело и с определением функции. Вместо того, чтобы сказать, что функция есть величина «игрек», числовое значение которой можно найти, зная числовое значение независимой переменной «икс», — что в общем виде записывается: y = f (x), — и дать ряд примеров её при помощи формул, функцию определяют, по существу, как отображение одного множества на другое. Делается это, однако, в школьных учебниках куда сложнее: сперва вводится понятие отношения между элементами двух различных множеств, а потом говорится, что при выполнении некоторых условий, наложенных на это отношение, последнее является функцией.


стр.

Похожие книги