Я — математик. Дальнейшая жизнь вундеркинда - страница 32

Шрифт
Интервал

стр.

Занятия гармоническим анализом не исчерпывали всех моих математических интересов. Меня занимали и другие проблемы, одни в большей, другие в меньшей степени. Научно-исследовательская группа нашей кафедры накопила уже немало работ, заслуживающих опубликования; в результате у нас возникло желание издавать свой собственный журнал, и мы взялись за осуществление этого проекта[42]. Я был первым редактором журнала, но вскоре мои обязанности взял на себя Филлип Франклин, незадолго до этого перешедший к нам из Гарвардского университета; я работал вместе с ним на испытательном полигоне в Абердине, где он был моим другом и помощником.

Иногда я обсуждал, чем бы мне стоило заняться, с профессором О. Д. Келлогом из Гарвардского университета. Тогда я еще не знал, как ревниво приберегают многие профессора научные темы для своих аспирантов и как цепко держатся за свой приоритет в решении тех или иных задач. Я привык к более свободной обстановке в Англии и к расточительности отца, который щедро делился своими идеями с каждым, кто выражал желание его выслушать. Неуемно настойчивое любопытство, которое я проявлял, конечно, не располагало в мою пользу тех, чье доброе мнение могло бы оказаться мне очень полезным. Официально я не считался студентом Келлога. Он немало помогал мне, но я отнимал у него слишком много времени и думаю, что он считал меня страшно надоедливым субъектом.

От Келлога я узнал, что старая задача о распределении потенциалов снова стала привлекать всеобщее внимание. Здесь невозможно точно сформулировать эту задачу, но я постараюсь объяснить, о чем в ней идет речь. В физике часто приходится иметь дело с величинами, принимающими различные значения в различных точках плоскости или пространства. Одной из таких величин является температура в комнате. Существует также ряд других подобных величин, описывающих такие процессы, как движение жидкости или диффузия газа; сюда же относятся измеряемая вольтметром переменная электродвижущая сила между точками пространства и землей или между двумя точками проводника с током.

Вряд ли стоит вдаваться в подробности относительно того, что называется электродвижущей силой; достаточно будет сказать, что это то, что мы измеряем в вольтах. Отметим также, что математическое изучение любых величин, изменяющихся в пространстве и во времени, относится к области дифференциальных уравнений в частных производных, представляющих собой математическое выражение связей, существующих между скоростью изменения нашей величины в различных пространственных направлениях и скоростью ее изменения во времени. То, что существуют величины, распределенные в пространстве и во времени одновременно, и что для них существуют скорости изменения в пространстве и во времени, было хорошо известно еще со времен Лейбница. Температура может меняться со скоростью стольких-то градусов в час, но она может также меняться со скоростью стольких-то градусов на 100 миль при перемещении к северу и стольких-то градусов на 100 миль при перемещении к востоку. В случае потоков воды, стекающих с холма, скорость изменения высоты непосредственно связана со скоростью потока: чем круче склон, тем быстрее течение.

Многие величины, распределенные в пространстве и во времени, очень важны для техники. Так, скорость убывания электродвижущей силы при удалении от линии передачи определяет, будет ли происходить передача по линии без существенных потерь или же эта линия в ночное время будет окружена сиянием в виде короны, уносящим много долларов из карманов компании, ведущей передачи, и ее клиентов. Для изучения теплоизоляционных свойств стен дома надо знать соотношения между потоком тепла и скоростью изменения температуры. Число примеров такого рода можно увеличивать почти безгранично.

Многие математические вопросы, связанные с исследованием подобных распределенных величин (которые мы будем называть потенциалами), разобраны до конца и не содержат никаких неясностей. Так, например, задача о распределении электродвижущей силы в части пространства, удаленной от стенок и от любых проводников, является сравнительно простой. Однако как только мы подходим к областям пространства, непосредственно примыкающим к поверхностям, имеющим некоторые специальные электрические свойства, мы немедленно сталкиваемся с затруднениями. Вблизи этих поверхностей, называемых границами, задача об определении электростатических потенциалов неимоверно усложняется. Аналогичные трудности возникают в теории теплопроводности и при изучении потоков жидкости.


стр.

Похожие книги