Аномальное поведение потенциалов вблизи границы ярко проявляется, например, в поведении электростатического потенциала около заостренных концов проводника типа острия громоотвода. Если такое острие соприкасается со средой, содержащей электрические заряды, то непосредственно вблизи него скорость падения электродвижущей силы становится огромной или даже бесконечной. Электрическое поле при этом может не выдержать такой скорости изменения потенциала, или, как еще говорят, такого градиента потенциала. В результате воздух около острия перестает быть изолятором и, если поле достаточно велико, острие оказывается окруженным электрическим разрядом — короной, хорошо видимой в темноте. Многим морякам известно любопытное явление, называемое огнями святого Эльма, когда в насыщенной электричеством грозовой атмосфере гвозди и другие заостренные металлические предметы начинают светиться таинственными огоньками. Такая же электрическая корона возникает у острия громоотвода; именно благодаря этому громоотвод вызывает постепенное и незаметное ослабление градиентов потенциала в заряженной атмосфере и предохраняет от наращивания этих градиентов до степени, при которой они могут вызвать разрушительный электрический разряд.
Вообще, там, где электростатический потенциал очень быстро изменяется в пространстве, некоторые среды испытывают сильное напряжение и в конце концов могут быть пробиты электрическим зарядом, подобно тому как молния пробивает воздух и может пробить стекло в окне. Способность среды противостоять такому напряжению называется диэлектрическим сопротивлением.
До сих пор я рассматривал задачу о поведении электрического поля вблизи заостренных проводников с точки зрения физика, ставящего это поведение в зависимость от диэлектрического сопротивления среды, окружающей проводник. Существует, однако, родственная задача, имеющая более формальный чисто математический характер.
Мы здесь сталкиваемся с одной из тех ситуаций, когда между математической и физической задачами обнаруживается тесная связь, но сами эти задачи не соответствуют одна другой абсолютно точно. Все реально существующие острия, изучаемые физикой, такие, например, как острие обыкновенной швейной иглы, на конце все же чуточку закруглены. Теоретически, однако, можно представить себе гораздо более острое острие, получающееся, например, при вращении вокруг средней линии поперечного сечения опасной бритвы, лезвие которой является общей касательной двух ее вогнутых боковых сторон. Подобное острие невозможно абсолютно точно осуществить на практике, но в математике оно является вполне допустимым понятием. Можно рассмотреть также задачу о распределении электрического потенциала в пространстве, окружающем такое острие, и исследовать его поведение непосредственно около самого заострения.
Оказывается, что в некоторых случаях математическое поведение потенциала вокруг нашего идеального острия имеет много общего с наблюдаемым поведением потенциала около очень острых проводников. В соответствующей физической ситуации напряжение становится столь сильным, что наступает пробой среды вблизи острия. В математической ситуации этого не может быть, так как здесь нет среды, поддающейся пробою, но зато здесь может наступить разрыв самих значений поля. В случае такого нарушения непрерывности поля потенциал в самой точке острия становится неопределенным: его значения оказываются зависящими от того, по какому пути мы приближаемся к острию. Именно это явление я и начал изучать по предложению Келлога с целью выяснить, для каких заострений могут возникать такие нарушения непрерывности.
Некоторые относящиеся сюда результаты были уже раньше получены польским математиком Зарембой. Эти результаты позволяли сформулировать определенную гипотезу относительно степени остроты, достаточной для того, чтобы вызвать неопределенность потенциала, и другую гипотезу относительно степени тупости, гарантирующей отсутствие неопределенности у потенциала. Однако между степенью остроты и степенью тупости, фигурирующими в этих гипотезах, оставался пробел, так что существовали некоторые острия, относительно которых ничего не было известно. Профессор Келлог сам выполнил весьма важную работу по исследованию этих промежуточных случаев, и теперь два его молодых ученика писали в Принстоне докторские диссертации на эту тему. Я тоже начал думать о возможных методах решения этой задачи, как только Келлог сообщил мне о состоянии относящихся сюда исследований.