Я — математик. Дальнейшая жизнь вундеркинда - страница 30

Шрифт
Интервал

стр.

В течение многих лет теоретическая электротехника переменных токов могла рассматриваться как уже законченная наука — в той ее части, которая касалась токов и напряжений фиксированной частоты, например совершающих 60 колебаний в секунду. В телефонии и вообще в электросвязи также приходится иметь дело с переменными токами, но здесь встречаются гораздо более сложные переменные токи, не имеющие фиксированной частоты колебаний, а испытывающие в каждый момент времени целый ряд различных колебаний. По телефонной линии одновременно распространяются токи с частотами порядка 20 колебаний в секунду и порядка 3 тысяч колебаний в секунду. Именно эта переменность и множественность частот позволяют использовать телефонную линию для передачи разнообразной информации любого сорта, от глубокого вздоха до тончайшего писка.

Здесь мы сталкиваемся с одним из самых древних разделов математики — с теорией колеблющейся струны; основы этой теории связаны с некоторыми идеями древнегреческого математика Пифагора. Пифагор и его ученики уже хорошо знали, что колебания струны создают звуки и что существует определенная связь между высотой созданного звука и длиной, плотностью и натяжением струны. Я не могу сказать, насколько отчетливо представляли себе древние греки, что струна может одновременно испытывать несколько разных типов колебаний. Во всяком случае, на заре современной науки, в XVII—XVIII веках, этот факт был уже хорошо известен.

Основным понятием, которое нам понадобится ниже, является понятие синусоиды. Для того чтобы представить себе, что это такое, предположим, что у нас есть вращающийся с постоянной скоростью барабан, на боковые стенки которого накручен лист бумаги, покрытый сажей. Предположим далее, что мы взяли камертон, прикрепили к его концу соломинку и заставили его колебаться параллельно оси нашего барабана. В таком случае, если поднести камертон к барабану, на покрытом сажей листе бумаги соломинка будет вычерчивать белую кривую; развернув лист, мы увидим правильную волнистую линию, которая и называется синусоидой.

Рассмотрим теперь более сложные кривые, получаемые при сложении нескольких синусоид. Вообще говоря, две кривые можно сложить, прибавляя друг к другу описываемые этими кривыми смещения, т. е., так сказать, комбинируя два камертона различной высоты тона так, чтобы оба они одновременно воздействовали на соломинку, прочерчивающую кривую на поверхности вращающегося барабана. В этом случае на одной и той же кривой будут одновременно наблюдаться два различных колебания; можно также добиться, чтобы этих колебаний было больше двух. Изучение способов разбиения различных кривых на сумму синусоид называется гармоническим анализом.

Существует очень важная теорема, которая гласит, что каждая кривая, форма которой снова и снова повторяется через один и тот же период, может быть представлена в виде суммы бесконечного числа отдельных синусоид с различными расстояниями между максимумами и минимумами. Фактически результаты такого рода были известны уже в XVIII столетии. Однако обычно с этой теоремой связывают имя Фурье — члена Французской академии наук, сопровождавшего Наполеона во время экспедиции в Египет.

С именем Фурье связан также другой способ сложения синусоид, при котором число этих синусоид столь велико, что уже невозможно выделить первую кривую, следующую за ней вторую кривую, следующую за ней третью и т. д. Иначе говоря, речь здесь идет о сложении громадного количества синусоид, частоты которых располагаются столь плотно, что их совершенно невозможно пронумеровать по порядку.

Две части гармонического анализа как раз и касаются, с одной стороны, анализа периодических процессов, представимых в виде того, что обычно называется рядом Фурье, и, с другой стороны, анализа процессов, возрастающих с течением времени от нуля до некоторой величины и в конце концов снова затухающих до нуля, для описания которых используются так называемые интегралы Фурье. В обоих случаях математикам приходится использовать изощренные методы суммирования определенных количеств, которые мы уже упоминали выше под названием лебегова интегрирования.


стр.

Похожие книги