а) вихревой пограничный слой на поверхности крыла и вихревой след за ним;
б) диспергирующие поверхностные и внутренние волны в неоднородной среде.
Проблема их взаимодействия частично поддается математическому моделированию. Для резонансного режима движения были выполнены расчеты характеристик потока при взаимодействии возникающих вблизи крыла вихревых структур с возбуждаемыми движением крыла присоединенными внутренними и поверхностными волнами. Результаты расчётов показали, что даже при установившемся движении крыла в неоднородной среде, если длина хорды крыла близка к полудлине присоединенной к движущемуся крылу гравитационной волны, в потоке жидкости или газа должны возникать аномальные возмущения, приводящие к появлению новых резонансных структур.
При этом с уменьшением относительного скачка плотностей при сохранении размеров движущегося тела скорость его движения, соответствующая резонансному режиму, также уменьшается, тем не менее, кинематические возмущения, связанные с проявлением вихре-волнового резонанса, сохраняют свою интенсивность.
Если отношение плотностей сред, разделяемых границей, стремится к нулю, то относительная скорость, при которой возникает резонанс, также стремится к нулю.
Этот результат, хотя ему и может быть найдено разумное теоретическое объяснение, УДИВИТЕЛЕН и, по нашему мнению, чрезвычайно значим: малые флуктуации плотности и малые скорости относительного движения могут привести, благодаря вихре-волновому резонансу, к значительным возмущениям в стратифицированной среде. Аналогичные явления могут происходить вблизи подводных хребтов или горных массивов на поверхности Земли при наличии незначительных скачков плотности, вызываемых сравнительно слабыми ветрами и течениями.
Вихре-волновой резонанс может быть также причиной бифуркационных событий, о которых мы будем говорить несколько ниже.
Так как диапазон параметров движения, порождающего вихре-волновой резонанс, очень узок, то сам резонанс требует создания специальных условий для своего изучения.
Тем не менее возмущения, им вызванные, настолько велики, что могут явиться причиной аварий глубоководных аппаратов или самолетов, летающих в горных областях.
Вихре-волновой и структурно-волновой резонанс обнаружен экспериментально и теоретически также в ряде других случаев взаимодействия вихревых и волновых структур (например, при кавитационном обтекании несимметричных тел, когда длина присоединенной к телу паровой или газовой каверны близка к длине тела, при обтекании плохообтекаемых тел, ниш и отверстий, при взаимодействии концентрированных вихрей с внутренними волнами в неоднородной жидкости или газе).
Во всех этих случаях не только наблюдались аномально большие возмущения параметров потока (поля), но и формировались новые типы устойчивых структур, не наблюдавшиеся при обычных условиях.
Возникшие резонансные структуры могут оказаться достаточно устойчивыми и существовать долго, «забывая» о своём происхождении.
Исходя из вышеизложенного, можно предположить, что появление резонансов подобного типа возможно при различных природных явлениях, в которых присутствует неоднородная сплошная среда (поле) и движущиеся в ней объекты, вихревые и грибовидные (мультипольные) структуры, и транспортно-информационные системы. А эти условия повсеместно встречаются в природе, на различных масштабных уровнях иерархии.
Структурно-волновой резонанс может явиться одним из главных механизмов возникновения и стабилизации новых структур от наномасштабов до масштабов Вселенной — то есть одной из причин структуре — и системоформирования, особенно у биологических объектов и в социальных системах.
Поэтому условия его возникновения и особенности этого типа процессов имеют особое значение при качественном анализе взаимодействия исследуемой системы и поля.
Поиск аномальных состояний динамических систем, в частности, транспортно-информационных, которые могут быть вызваны явлением структурно-волнового резонансного взаимодействия или аналогичных ему, должен войти как неотъемлемая часть в синергетическую методологию исследования сложных систем.