После этого, под воздействием специфического фермента происходит расщепление фруктозо-1,6-дифосфата на две фосфорилированных трехуглеродных молекулы – на дигидроксиацетонфосфат и глицеральдегид-3-фосфат. Первое из этих соединений легко переходит во второе, и именно оно участвует в дальнейших реакциях гликолиза.
Еще на минутку отвлечемся. В клетке присутствует особое вещество – никотинамидадениндинуклеотид, или, сокращенно НАД. Это соединение способно присоединять, переносить и отдавать протоны и электроны, то есть служит окислителем и восстановителем.
Так вот, глицеральдегид-3-фосфат взаимодействует с НАД, окисляется до фосфоглицериновой кислоты, и присоединяет неорганический фосфат с образованием 1,3-бифосфорной кислоты. Одновременно образуется НАДH + Н>+. Вот теперь, наконец, происходит то, ради чего все, собственно, и затевалось. 1,3-бифосфоглицериновая кислота отдает фосфат АДФ с образованием 1 молекулы АТФ. Из молекулы глюкозы образовалось две молекулы 1,3-бифосфорной кислоты, и, значит, мы получили в ходе гликолиза уже 2 молекулы АТФ. Счет сравнялся. Дальше происходит еще несколько реакций, распространяться о которых не будем за недостатком места и, чтобы не загромождать изложение. В их результате образуется очень активное и богатое энергией вещество – фосфоенолпируват. Это соединение отдает фосфорильную группу АДФ с образованием еще одной молекулы АТФ и пировиноградной кислоты. Учитывая, что из одной молекулы глюкозы образуется две молекулы фосфоенолпирувата, мы имеем еще две молекулы АТФ. Побеждаем с преимуществом в два очка. То есть, как выяснилось, окисление может быть эффективным даже в отсутствие кислорода.
Что же происходит дальше? Дальше происходит самое интересное. Все, кто занимался спортом, слышали, что есть в клетках молочная кислота, которая накапливается в крови при интенсивной физической нагрузке. Начало этому накоплению полагается здесь, в исходе гликолиза. Дело в том, что при наличии кислорода пировиноградная кислота поступает в цикл трикарбоновых кислот (об этом мы еще поговорим), а, если кислорода недостаточно, то цикл этот оказывается блокированным, и природа идет по другому пути: с использованием НАДН + Н>+ пировиноградная кислота восстанавливается в молочную кислоту с образованием НАД. Если снабжение кислородом восстанавливается, то молочная кислота окисляется в пировинградную кислоту и запускается цепь реакций цикла трикарбоновых кислот (цикл Кребса).
Именно поэтому в интенсивно работающей мышце, когда ей приходится работать в анаэробных условиях, активируется путь гликолиза с повышенным образованием молочной кислоты. (Продвинутые тренеры не зря контролируют допустимость нагрузок по уровню молочной кислоты в крови).
Цикл трикарбоновых кислот (цикл Кребса)
Дальнейшие события энергетического обмена клетки перемещаются в митохондрию, клеточную органеллу, которая и существует для того, чтобы продуцировать энергию в больших количествах, используя для этого кислород. Правда, до кислорода еще далеко. К его участию в обмене надо подготовиться, и такой подготовкой является цикл трикарбоновых кислот. Название трудное, но, если его растолковать, то оно уже не покажется таким сложным.
Кислота – это соединение, которое в растворе высвобождает протон (Н+), то есть положительно заряженный ион атома водорода. Чем больше в растворе таких протонов, тем сильнее кислота.
Кислоты могут быть органическими и неорганическими. В цикле Кребса участвуют только органические кислоты, похожие на уксусную кислоту. Она имеет простое строение, СН>3-СООН. Кислотность определяется карбоксильной группой (СООН), которая высвобождает в раствор протон (ион водорода). Если в органической кислоте одна карбоксильная группа, то кислота называется монокарбоновой (однокарбоновой), если их две, то дикарбоновой (двухкарбоновой), а, если карбоксильных групп три, то кислота, соответственно, называется трикарбоновой. В ходе цикла первой образуется трикарбоновая лимонная кислота, и, поэтому, еще одно название этого основополагающего энергетического цикла – цикл лимонной кислоты.