Ключевым соединением цикла лимонной кислоты является вещество, называемое ацетилкоэнзимом А (сокращенно обозначается ацетил-СоА). Это соединение является конечным продуктом окисления углеводов, жиров и белков, и представляет собой эфир уксусной кислоты и коэнзима А. Откуда оно берется при окислении глюкозы? Оказалось, что оно образуется после окисления пировиноградной кислоты – продукта реакций гликолиза (см. предыдущий раздел), а сам коэнзим А представляет собой пантотеновую кислоту или витамин В5. Отметим этот первый витамин в цепях получения энергии.
Надо помнить, что витамины – это необходимые компоненты жизненно важных реакций, без которых невозможна жизнь. Витамины, кроме того, не синтезируются организмом человека, и их надо получать извне. Значит, их все же надо употреблять (либо в овощах и фруктах, либо в таблетках).
Кроме того, в митохондрии (в ее матриксе, во внутреннем отсеке) есть небольшое количество еще одного соединения – щавелевоуксусной кислоты (оксалоацетата). При соединении щавелевоуксусной кислоты (дикарбоновой кислоты) с ацетил-СоА (фактически с монокарбоновой уксусной кислотой) образуется трикарбоновая лимонная кислота.
Возникает вопрос: зачем организму такие сложности?
Ответ представляется неожиданно простым. Организм никогда не придумывает ничего кардинально нового, если нужны какие-то дополнительные функции. Новое пристраивается к хорошо известному старому. Когда обмен был анаэробным, клетка обходилась гликолизом. Когда потребность в энергии возросла, к нему были пристроены другие реакции, цепь которых была замкнута в круг, что позволяет тоньше регулировать процесс (многозвенный процесс, как это ни парадоксально, можно регулировать тоньше, так как есть возможность воздействовать на каждое звено по отдельности). Когда же в митохондриях появился кислород, то к циклу лимонной кислоты организм пристроил дыхательную цепь (о ней мы поговорим ниже).
Итак, что происходит в цикле лимонной кислоты?
Образованная в ходе гликолиза пировиноградная кислота окисляется, высвобождая углекислый газ, превращается в уксусную кислоту и присоединяется к коэнзиму А, и в результате получается ацетил-СоА, который соединяется с щавелевоуксусной кислотой, образуя лимонную кислоту. В этой реакции происходит восстановление НАД, который связывается с протонами и электронами. Запомним это, НАД нам еще понадобится.
Далее следует каскад окислительных реакций, в ходе которых от лимонной кислоты последовательно отщепляются две молекулы углекислого газа (этот углекислый газ является побочным продуктом и удаляется из клетки, а затем поступает в кровь и выводится из организма с выдыхаемым воздухом), восемь протонов (ядер атомов водорода) и электронов, которые переносятся на НАД и хинон. Эти два соединения дальше участвуют в процессах, происходящих в дыхательной цепи. Помимо всего, образуется и одна высокоэнергетическая связь в виде гуанозинтрифосфата (ГТФ).
В результате всех этих пертурбаций снова образуется молекула щавелевоуксусной кислоты, которая готова соединиться с ацетил-СоА, и цикл повторяется.
Однако все это всего лишь подготовка к главному действу – к вступлению протонов и электронов в дыхательную цепь окислительного фосфорилирования.
Окислительное фосфорилирование в дыхательной цепи
События, описанные ниже, происходят в мембране митохондрий – специализированных органелл клетки, где происходит поточное производство энергетической валюты – молекул АТФ.
В мембрану митохондрий встроены пять элементов дыхательной цепи – белок флавопротеин, хинон и три цитохрома.
НАДН+Н>+, образованный в цикле Кребса, передает протоны и электроны флавопротеину. И еще два протона и электроны передаются непосредственно на хинон.
В дыхательной цепи происходит разделение зарядов – электроны попадают в митохондрию, накапливаясь на внутренней поверхности ее мембраны, а протоны выбрасываются, накапливаясь на наружной стороне мембраны.
Таким образом, произошло разделение зарядов. Дыхательная цепь – это биологический конденсатор, порождающий разность потенциалов по обе стороны мембраны митохондрии. Эта разность потенциалов обладает потенциальной энергией, которую можно использовать, если открыть шлюз, соединяющий наружную и внутреннюю поверхности мембраны. Такой шлюз, действительно, существует, и попеременно, открывается и закрывается.