Для работы клеток используется химическая энергия, запасенная в связях между атомами и молекулами. Как утверждают в курсах химии, эта связь может быть ковалентной и не ковалентной, например, водородной (то есть электрической). При разрыве связей высвобождается энергия (энергия в физике определяется как способность совершить работу, и измеряется в тех же единицах). Она может высвободиться в виде тепла, а может пойти на образование другой связи, то есть на образование нового вещества. Так все и происходит – обмен энергией в организме неотделим от обмена веществ.
Есть в клетке и специальные соединения, которые играют роль поставщиков энергии для химических реакций синтеза, а сами образуются в ходе реакций расщепления, за счет выделяющейся при этом энергии. К этим соединениям относятся такие вещества, как креатинфосфат (о котором сторонние люди едва ли когда-нибудь слышали) и аденозинтрифосфат, он же, сокращенно, АТФ. Об этом соединении слышали все (во всяком случае, лет тридцать назад о нем, точно, все знали, потому что его очень охотно кололи внутримышечно, пока не поняли, что при таком введении от него нет никакого толка), так как АТФ называют энергетической валютой клетки. Чем больше в ней АТФ, тем интенсивнее идут в ней процессы синтеза необходимых веществ. АТФ передает энергию, отдавая другим соединениям фосфатную (фосфорильную) группу. Не вдаваясь в подробности, скажу, что активность многих (лучше сказать, почти всех) ферментов (катализаторов) биохимических реакций стимулируется присоединением фосфата, так как он меняет их конфигурацию и сродство (способность захватывать) к реагентам. Но откуда в клетке берется АТФ?
Вот этим вопросом мы сейчас и займемся.
Правда, еще одно замечание. Энергия в клетке генерируется за счет окисления. Что это такое? Мы знаем, что одним из самых сильных окислителей в природе (если не считать фтора) является кислород, и окисление вещества – это его соединение с кислородом. Но это не всегда так, а иногда и совсем не так. Для окисления кислород нужен не всегда. Например, есть организмы (их называют анаэробными), для которых кислород – смертельный яд, но окисление в их клетках, тем не менее, происходит. Так вот, как известно, все вещества состоят из атомов, а атомы из ядер, вокруг которых обращаются электроны. Нас сейчас не будут интересовать подробности, но ядро заряжено положительно, а электрон несет элементарный отрицательный заряд. Окисление атома или молекулы происходит, когда он или они отдают электроны. Таким образом, вещество, теряющее электрон, окисляется, а вещество, электрон приобретающее – восстанавливается.
Следовательно, окисление и восстановление могут происходить и в отсутствие кислорода. Больше того, одна часть органической молекулы может, при определенных условиях восстановить сама себя – то есть одна часть окисляется, отдавая электрон другой части.
Теперь, вооружившись теоретически, можем переходить к рассмотрению первого этапа энергетических преобразований глюкозы – к гликолизу.
Итак, глюкоза проникает в клетку, где ее тотчас атакует фермент гексокиназа. Происходит это в цитозоле, то есть в цитоплазме клетки – не в ядре, и не в митохондрии. (Названия биохимических субстратов запоминать, естественно, не надо. Надо лишь понять суть происходящего). Этот фермент катализирует фосфорилирование глюкозы – она присоединяет остаток фосфорной кислоты, на что расходуется одна молекула АТФ с образованием глюкозо-6-фосфата. (Это название говорит лишь о том, что фосфат присоединяется к 6 атому глюкозы). Глюкоза – это спирт, содержащий альдегидную группу, но есть еще кетоспирт – фруктоза, являющийся изомером глюкозы. Оба сахара довольно легко превращаются друг в друга. Так вот, следующим этапом глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат. После этого по ходу гликолиза происходит расходование еще одной молекулы АТФ (как мы видим, пока энергия только расходуется, но не создается). В результате еще одного фосфорилирования образуется фруктозо-1,6-дифосфат: фосфатные группы присоединились к обоим концам молекулы.