Лекции по физике 6 - страница 36

Шрифт
Интервал

стр.

повсюду, где оно должно стоять. С точки зрения электричества и магнетизма, однако, мы прямо начинаем с двух констант e>0 и с>2, которые появляются в уравнениях электростатики и магнитостатики:

(18.14)

и

(18.15)

Если взять любое произвольное определение единицы заряда, можно экспериментально определить постоянную e>0, входящую в уравнение (18.14), скажем, измеряя силу между двумя не­подвижными единичными зарядами по закону Кулона. Мы должны также определить экспериментально постоянную e>0с>2, которая появляется в уравнении (18.15), что можно сделать, скажем, измерив силу между двумя единичными токами. (Еди­ничный ток означает единичный заряд в секунду.) Отношение этих двух экспериментальных постоянных есть с>2 — как раз другая «электромагнитная постоянная».

Заметим теперь, что постоянная с>2 получается одна и та же независимо от того, какова выбранная наша единица заряда. Если мы выберем «заряд» в два раза больше (скажем, удвоен­ный заряд протона), то в нашей «единице» заряда e>0 должна уменьшиться в четыре раза. Когда мы пропускаем два таких «единичных» тока по двум проводам, в каждом проводе будет в два раза больше «зарядов» в секунду, так что силы между двумя проводами будут в четыре раза больше. Постоянная e>0с>2 должна уменьшиться в четыре раза. Но отношение e>0с>2/e>0 не меняется.

Следовательно, непосредственно из экспериментов с заряда­ми и токами мы находим число с>2, которое оказывается равным квадрату скорости распространения электромагнитных воз­буждений. Из статических измерений (измеряя силы между двумя единичными зарядами и между двумя единичными токами) мы находим, что с=3,00·10>8м/сек. Когда Максвелл впервые проделал это вычисление со своими уравнениями, он сказал, что совокупность электрического и магнитного полей будет распространяться с этой скоростью. Он отметил также таин­ственное совпадение — эта скорость была равна скорости света. «Мы едва ли можем избежать заключения,— сказал Максвелл,— что свет — это поперечное волнообразное движение той же самой среды, которая вызывает электрические и магнит­ные явления».

Так Максвелл совершил одно из великих обобщений физики! До него был свет, было электричество и был магнетизм. Причем два последних явления были объединены экспериментальными работами Фарадея, Эрстеда и Ампера. Потом внезапно свет не стал уже больше «чем-то еще», а был электричеством и магнетизмом в новой форме, небольшими кусками электри­ческого и магнитного полей, которые распространяются в про­странстве самостоятельно.

Мы обращали ваше внимание на некоторые черты этого осо­бого решения, которые, однако, справедливы для любой элек­тромагнитной волны: магнитное поле перпендикулярно направ­лению движения фронта волны; электрическое поле также перпендикулярно направлению движения фронта волны; и два вектора Е и В перпендикулярны друг другу. Далее, величина электрического поля Е равна произведению с на величину маг­нитного поля В. Эти три факта — что оба поля поперечны на­правлению распространения, что В перпендикулярно Е и что Е=сВ — верны вообще для любой электромагнитной волны. Наш частный случай — хороший пример, он показывает все основные свойства электромагнитных волн.

§ 6. Решение уравнений Максвелла; потенциалы и волновое уравнение

Теперь стоило бы заняться немного математикой; мы запи­шем уравнения Максвелла в более простой форме. Вы, пожалуй, сочтете, что мы усложняем их, но если вы наберетесь терпения, то внезапно обнаружите их большую простоту. Хотя вы уже вполне привыкли к каждому из уравнений Максвелла, имеется все же много частей, которые стоит соединить воедино. Вот как раз этим мы и займемся.

Начнем с С·В=0 — простейшего из уравнений. Мы знаем, что оно подразумевает, что В — есть ротор чего-то. Поэтому, если вы записали

B = СXA, (18.16)

то считайте, что уже решили одно из уравнений Максвелла. (Между прочим, заметьте, что оно остается верно для другого вектора А', если A'=A+Сty, где y— любое скалярное поле, потому что ротор Сy — нуль и В — по-прежнему то же самое. Мы говорили об этом раньше.)

Теперь разберем закон Фарадея СXE= -


стр.

Похожие книги