Квантовая вселенная. Как устроено то, что мы не можем увидеть - страница 17

Шрифт
Интервал

стр.

На рис. 3.4 показаны еще две волны, на этот раз соединяющиеся по-другому: одна немного смещена относительно другой. Мы вновь отметили максимумы, минимумы и промежуточные точки циферблатами. Сейчас 12-часовой циферблат верхней волны соответствует трехчасовому циферблату нижней. Мы попытаемся сформулировать правило, которое позволит складывать эти циферблаты. Оно состоит в том, что нужно взять две стрелки и соединить их головкой и хвостом. После этого достраиваем треугольник, рисуя новую стрелку, которая сводит вместе две предыдущие. Пример приведен на рис. 3.5. Новая стрелка отличается по длине от двух других и указывает в другом направлении; это новый циферблат, отображающий сумму двух предыдущих.


Рис. 3.4. Две волны смещены относительно друг друга. Верхняя и средняя волны складываются, образуя нижнюю волну


Теперь можно добиться большей точности и с помощью простой тригонометрии вычислить результаты сложения любой конкретной пары циферблатов. На рис. 3.5 мы складываем 12-часовой и 3-часовой циферблаты. Допустим, длина стрелок двух первых циферблатов – 1 см (что соответствует максимальной высоте волны – 1 см). Когда мы сводим стрелки головкой к хвосту, получается прямоугольный треугольник, две стороны которого имеют длину 1 см каждая. Стрелка нового циферблата будет иметь длину третьей стороны треугольника – гипотенузы. Теорема Пифагора гласит, что квадрат гипотенузы равен сумме квадратов катетов: h² = x² + y². Подставляем числа: h² = 1² + 1² = 2. Итак, длина новой стрелки циферблата h будет равняться квадратному корню из 2, то есть примерно 1,414 см. В каком направлении будет указывать эта новая стрелка? Для этого нужно узнать величину угла треугольника, отмеченного на рисунке буквой θ. В нашем примере, когда две стрелки одинаковой длины, одна из которых указывает на 12, а другая на 3, можно найти ответ и без всякой тригонометрии. Очевидно, что гипотенуза образует угол 45°, так что новое «время» будет находиться между 12 и 3 часами – это половина второго. Конечно, такой пример – особенный случай. Мы выбрали такие циферблаты, чтобы их стрелки располагались под прямыми углами и имели одинаковую длину, а это упрощает математику. Но очевидно, что можно вычислить длину стрелки и получающееся время при сложении любой пары циферблатов.


Рис. 3.5. Правило сложения циферблатов


Теперь вернемся вновь к рис. 3.4. Для любой точки на маршруте новой волны мы можем вычислить высоту волны, сложив циферблаты по приведенному выше правилу и задавшись вопросом, насколько стрелка нового циферблата близка к 12-часовому направлению. Когда стрелка указывает на 12, все очевидно: высота волны попросту равна длине стрелки. Точно так же, когда стрелка направлена на 6, все очевидно: волна находится на минимуме, и ее глубина равна длине стрелки. Все понятно и в том случае, когда на часах 3 или 9, потому что высота волны равна нулю, ведь стрелка часов находится под прямым углом к 12-часовому направлению. Чтобы вычислить высоту волны, которую описывает тот или иной циферблат, нужно умножить длину стрелки h на косинус угла, который эта стрелка образует с направлением на 12 часов. Например, угол, который образуют направления на 3 и на 12 часов, равен 90°, а cos 90° равен нулю, так что высота волны тоже равна нулю. Половина второго соответствует углу в 45°, а cos 45° – примерно 0,707, так что высота волны составляет 0,707 от длины стрелки (заметьте, что 0,707 – это 1 / √2!). Если ваших познаний в тригонометрии недостаточно, чтобы понять несколько последних предложений, можно смело игнорировать эти подробности. Важен принцип: зная длину стрелки часов и ее направление, вы можете вычислить высоту волны – и даже если не понимаете тригонометрию, легко справитесь, тщательно нарисовав стрелки часов и спроецировав их на 12-часовое направление с помощью чертежной линейки. (Здесь мы хотели бы уточнить, что всем читающим эту книгу студентам такой способ действий не рекомендуется: синусы и косинусы знать полезно.)

Таково правило сложения циферблатов, и оно прекрасно работает, как показывает нижняя из трех картинок на рис. 3.4, где мы систематически применяли это правило для различных точек на волнах. В этом описании водяных волн все, что имеет значение, – проекция «времени» на 12-часовое направление, связанная с единственным параметром – высотой волны.


стр.

Похожие книги