Вот почему использование циферблатов не так уж необходимо при описании водяных волн. Взгляните на три циферблата на рис. 3.6: все они соответствуют одной и той же высоте волны и дают эквивалентные способы представления одной и той же высоты воды. Но циферблаты эти, разумеется, различны, и, как мы увидим, эти различия имеют значение, если использовать их для описания квантовых частиц, потому что в этом случае длина стрелки циферблата (или размер циферблата, что одно и то же) имеют очень важное истолкование.
.
Рис. 3.6. Три разных циферблата с одной и той же проекцией на 12-часовое направление
В некоторых местах этой книги, и особенно в этом, мы будем иметь дело с абстракциями. Чтобы не поддаться головокружительному беспорядку, нужно помнить об общей картине. Экспериментальные результаты Дэвиссона, Джермера и Томсона и сходство полученных данных с поведением водяных волн вдохновили нас на следующий анзац: частицу следует представить в виде волны, а сама волна может быть изображена в виде множества циферблатов. Мы представляем, как электрон распространяется «подобно водяной волне», но пока не дали подробного объяснения, что же происходит. Пока нам важна только сама аналогия с водяными волнами и понимание того, что электрон в любой момент может быть описан как волна, которая распространяется и интерферирует подобно водяным волнам. В следующей главе постараемся с большей точностью описать, как перемещается электрон с течением времени. Помогать нам в этом будут различные бесценные идеи, включая знаменитый принцип неопределенности Гейзенберга.
Но прежде потратим немного времени на обсуждение циферблатов, с помощью которых мы представляем электронную волну. Подчеркиваем, что эти циферблаты ни в коем смысле нельзя считать реальными, а часовая стрелка не имеет никакого отношения ко времени суток. Идея использовать множество микроскопических циферблатов для описания реального физического феномена не так уж нелепа, как это может показаться. Подобные технические приемы для описания природных явлений используют многие физики, и мы уже видели, как это работает при описании водяных волн.
Еще один пример подобного абстрагирования – описание температуры в комнате, которое может быть представлено в виде числового множества. Числа не существуют как физические объекты, и это роднит их с нашими циферблатами. Множество чисел и их связь с точками в комнате – просто удобный способ представления температуры. Физики называют такую математическую структуру полем. Температурное поле – просто числовое множество, одно число для одной точки. В случае с квантовыми частицами поле обладает большей сложностью, потому что для каждой точки требуется не просто число, а целый циферблат. Такое поле обычно называется волновой функцией частицы. То, что нам для создания волновой функции требуется ряд циферблатов, хотя для температурного поля или волн воды достаточно числа, демонстрирует существенную разницу. На физическом жаргоне циферблаты появляются потому, что волновая функция – это «комплексное» поле, а температура или высота водяной волны – «действительное» поле. Но нам подобный язык не пригодится, потому что мы можем работать с циферблатами[6].
Не стоит беспокоиться по поводу отсутствия непосредственных способов почувствовать волновую функцию, в отличие от температурного поля. То, что мы не можем ее осязать, нюхать или видеть непосредственно, никакого значения не имеет. Честно говоря, мы бы немногого добились в физике, если бы решили ограничить себя описанием тех вещей во Вселенной, которые можем воспринимать непосредственно.
При обсуждении двухщелевого эксперимента с электронами мы говорили, что электронная волна будет самой большой там, где электрон находится с наибольшей вероятностью. Эта интерпретация позволила осознать, как полосатая интерференционная фигура может создаваться постепенно, точка за точкой, по мере прибытия электронов. Но сейчас это утверждение для наших целей уже недостаточно точное. Мы хотим знать, какова вероятность обнаружить электрон в конкретной точке; мы хотим измерить эту вероятность каким-либо числом. Здесь-то и возникает потребность в циферблатах, потому что та вероятность, которую мы хотим найти, не просто высота волны. Правильно будет интерпретировать