Для бактерий, живущих в нижних слоях отложений, кислород является ядом. Они получают энергию, окисляя сероводород и превращая его в серу или сульфат-ионы. Другими продуктами этой реакции являются протоны и электроны.
Осадок крупным планом
Теперь вернемся к электричеству. Согласно определению, ток — это направленное движение заряженных частиц. В данном случае движущимися заряженными частицами являются электроны (точно так же, как в обычных проводах). Бактериям из верхних слоев отложений для восстановления кислорода необходимы лишние электроны, которые очень удачно образуются в реакции превращения (а точнее — окисления) сероводорода. И именно эти электроны путешествуют из нижних слоев в верхние. С другой стороны, кислород помогает бактериям из нижних слоев эффективнее окислять сероводород. Но прямо использовать его они не могут, поэтому организуют электрохимическое сопряжение с обитателями верхних этажей.
Фактически это сопряжение позволяет двум различным и к тому же разделенным в пространстве организмам вместе осуществлять один процесс — окислять сероводород при помощи кислорода. Этот процесс выгоден обоим его участникам, но проводить его поодиночке они не могут.
Окисление какого-либо субстрата при помощи кислорода называется дыханием (иногда, чтобы избежать путаницы, говорят «клеточное дыхание»). Обычно кислород и субстрат, дающий электроны для его восстановления, находятся в одной клетке. Можно сказать, что субстрат — это «пища», а кислород — прибор для ее употребления. В данном случае получается, что бактерии, живущие в верхних слоях отложений, дышат за себя и за своих нижних соседей, а те в свою очередь поглощают двойную порцию «пищи» — за себя и обитателей верхних этажей.
Исследователи полагают, что обнаруженный ими «канал» передачи электронов может работать не только для совместного окисления сероводорода. Ученые оценили, что передаваемых по цепям электронов с лихвой хватает на переработку всего H>2S и еще немало остается. Избыток электронов вполне может использоваться для стимулирования каких-либо еще реакций.
Хорошо забытое старое
Идея о существовании такой электрической проводки в живых системах впервые была сформулирована еще в 60-е годы прошлого века, однако тогда она не была воспринята серьезно. Работа Нильсена и коллег дает серьезные доводы в пользу правомерности подобной гипотезы. Механизм транспорта электронов пока не ясен. Вероятнее всего, элементарные частицы перемещаются при помощи особых белков, встроенных во внешние мембраны бактерий. Не исключено, что бактериальные клетки соединяются друг с другом в сети длинными тонкими выростами — своеобразными нанопроводами. Наконец, транспорт электронов может осуществляться при помощи пирита -минерала, входящего в состав донных отложений и являющегося хорошим проводником тока. Вполне вероятно, что бактерии одновременно используют несколько механизмов.
Многие коллеги авторов новой работы уже назвали ее результаты «выдающимися» и «потрясающими». Восторг ученых можно понять: если данные Нильсена и его команды подтвердятся, это будет означать открытие совершенно нового типа взаимодействий между бактериями. В живой природе, а особенно в случае бактерий, очень часто выполняется правило: «если что-то теоретически возможно и выгодно, то, скорее всего, оно где-то уже используется». Поэтому у новой работы отличные шансы войти в учебники.
Ирина Якутенко
www.nature.com/nature/journal/v463/n7284/abs/nature08790.html
Философ-профессионал или публичный интеллектуал
Николай Воронов
Может ли философ быть профессионалом? И кем он может быть, кроме как профессионалом? Почему вообще возникают такие вопросы — ведь философские факультеты есть во многих вузах нашей страны. Об этом рассуждает аспирант философского факультета МГУ Николай Воронов.
Подготовка по специальности, а соответственно и профессиональная пригодность определены соответствующими документами. Философы получают дипломы, где ясно написано, что они — «Философы. Преподаватели философии» и могут работать по специальности. Тем не менее, в случае вопроса о роде занятий ответ, что ты философ, часто вызывает недоумение.