Пусть P и Q — два множества. Составим их произведение R, т.е. множество всех пар (x, y), где xÎP, yÎQ. В множестве R выделим некоторое подмножество Q. О парах (x, y), попадающих в Q, будем говорить, что они находятся в отношении. Понятие отношения между элементами x и y, принадлежащими множествам P и Q, вводилось в 4-м классе. Обстоятельно и громоздко объяснялось на многочисленных примерах конечных множеств. После этого в 6-м классе вводилось понятие функции, опирающееся на понятие отношения, примерно следующим образом: функцией называется отношение, при котором каждая точка x множества P находится в отношении не более чем с одной точкой y множества Q. Подмножество множества P, состоящее из всех таких x, которые находятся в отношении с некоторыми точками y множества P, называется областью задания функции. А множество всех таких элементов y множества Q, которые находятся в отношении к некоторым элементам x множества P, называется областью значений функции. Отсюда возникла новая проблематика отыскания области задания функции и области её значений. Малосодержательные и ни для чего не нужные упражнения по этой проблематике вошли в задачники.
Вполне созвучное с теоретико-множественной идеологией понятие преобразования вошло как основное в геометрию. Возникло следующее определение вектора: вектором называется преобразование пространства, при котором... далее перечисляются свойства, означающие, что это преобразование есть трансляция пространства. Естественное и нужное для всех определение вектора как направленного отрезка было отодвинуто на задний план.
Школьники если бы и могли освоить все эти определения, то, во всяком случае, в результате огромного труда и затраты времени, благодаря чему основное содержание математики, т.е. умение производить алгебраические вычисления и владение геометрическим чертежом и геометрическим представлением, отодвигалось на задний план. И даже вовсе уходило из поля зрения учителей и школьников[1].
Внедрение теоретико-множественной идеологии в школьную математику, несомненно, соответствовало вкусам А. Н. Колмогорова. Но само это внедрение, я думаю, уже не находилось под его контролем. Оно было перепоручено другим лицам, малоквалифицированным и недобросовестным. Здесь сказалась черта характера Колмогорова. С охотой принимаясь за новое дело, Колмогоров очень быстро охладевал к нему и перепоручал его другим лицам. При написании новых учебников, по-видимому, произошло именно это. Составленные в описанном стиле учебники печатались миллионными тиражами и направлялись в школы без всякой проверки Отделением математики АН СССР. Эту работу осуществляли под руководством Колмогорова методисты Министерства просвещения СССР и Академии педагогических наук. Жалобы школьников и учителей безжалостно отвергались бюрократическим аппаратом министерства и Академии педагогических наук. Старые опытные учителя в значительной степени были разогнаны. Этот разгром среднего математического образования продолжался более 15 лет, прежде чем он был замечен в конце 1977 года руководящими математиками Отделения математики АН СССР. Ответственность за происшедшее лежит, конечно, не только на одном А. Н. Колмогорове, Министерствах и Академии педагогических наук, но также и на Отделении математики, которое, поручив Колмогорову ответственную работу, совсем не интересовалось тем, как она осуществляется.
После того как катастрофа была замечена и начал намечаться отпор происходящему, лица, каким-то образом заинтересованные в том, чтобы разгром продолжался, стали сопротивляться. В телевизионной передаче «Сегодня в мире» я сам слышал выступление комментатора В. Зорина, в котором он сообщал, что среднее математическое образование в Советском Союзе поставлено очень хорошо и что ему даётся высокая положительная оценка печатью Соединённых Штатов. Это было уже в самом конце 70-х годов. Нет сомнений, что похвала врагов есть дурной признак. Стоит заметить, что сам А. Н. Колмогоров в это время получил Государственную премию Израиля. Возможно, там высоко оценили тот разгром, происходящий в средней школе Советского Союза.