Вместе с тем многие отмечают, что вымостка пола усыпальницы фараона была якобы помещена на уровне, на котором площадь горизонтального сечения равнялась половине площади основания, а диагональ угла — одной из сторон основания. Из этих двух отношений, из которых одно является функцией другого, совершенно очевидно, что замысел строителей нашел свое отражение в соотношении площадей. Но египтяне, опытные геодезисты, безусловно знали, что площадь квадрата, построенного на диагонали, равна удвоенной площади первого квадрата. Используя данное правило, они легко определили уровень расположения погребальной камеры. Однако отсюда не следует, что из указанного свойства диагонали квадрата, являющегося лишь частным случаем для гипотенузы произвольного прямоугольного треугольника, египтяне сумели вывести основное отношение, получившее свое выражение лишь двадцать два века спустя после Хеопса в знаменитой теореме Пифагора.
В эпоху сооружения больших пирамид геометрия, таким образом, не выходила из стадии интуитивного и утилитарного эмпиризма. Жрецы-зодчие, поставленные перед трудными техническими задачами, изыскивают все более совершенные методы их разрешения; ум, все еще направленный на решение практических вопросов, не был способен целиком отдаться чисто отвлеченным исследованиям. Так были выработаны методы расчетов и построений, ссылки на которые встречаются в более поздних документах, как, например, в Папирусе Ринд или в Московском папирусе, относящихся к Среднему царству. Однако А. Рей280 спрашивает по поводу этих еще эмпирических текстов следом за Питом, так педантично опубликовавшим Папирус Ринд: «Не существовала ли геометрия более сокровенная, чем та, следы которой здесь имеются и позволяют иногда предполагать существование некоторых более остроумных решений, чем дошедшие до нас? Мы обнаружили бы тогда в сохранившихся папирусах лишь несколько полезных данных для тех, кому предстояло ими пользоваться».
Хотя до настоящего времени и не найдено никаких египетских математических документов сокровенного характера, все же, если верить грекам, известно, что египетские жрецы тщательно скрывали свои математические секреты. Аристотель указывает на то, что жрецы изучали математические науки, Диодор, как мы уже отмечали, сообщает об их влиянии на открытия и учение Пифагора и Демокрита, с гордостью провозглашавшего, что никто еще не опередил его в построении фигур при помощи линий и доказательстве их свойств, прибавляя при этом: «Даже египетские harpedonaptes281!»
Следовательно, вполне можно допустить, что египетские геометры действительно обладали обширными знаниями, тщательно собираемыми и секретно хранимыми в храмах, знаниями, полученными благодаря неусыпным наблюдениям в течение многих веков, отделяющих эпоху сооружения первых пирамид, т. е. около 2900 г. до н. э., от эпохи пробуждения математического мышления греков, т. е. начала VI в. до н. э. Что же касается, в частности, геометрии, то изучение таких сооружений, как знаменитая Великая пирамида, должно было занимать значительное место в исследованиях этих жрецов, и вполне понятно, что они сумели обнаружить в этих памятниках, без сомнения гораздо позже их сооружения, общие свойства, о которых не подозревали их строители.
Таким образом на протяжении трех тысячелетий своей древней истории Египет подготовил путь для открытий греческих ученых, накапливая постепенно сокровищницу знаний, из которой греческие ученые могли широко черпать необходимые сведения. Но все же нельзя отрицать, что лишь благодаря философски настроенному мышлению греков геометрия стала подлинной наукой.