Я — математик. Дальнейшая жизнь вундеркинда - страница 12

Шрифт
Интервал

стр.

Таким образом, истоки «математики максимумов и минимумов для кривых» относятся к весьма удаленному от нас периоду, однако полное развитие эта математика получила совсем недавно. Мир кривых гораздо разнообразнее и богаче мира точек, но только математики XX столетия сумели овладеть его богатством.

Под влиянием бесед с Барнеттом весь первый год пребывания в Массачусетском технологическом институте я потратил на поиски возможностей распространения понятия интеграла Лебега на случаи более сложные, чем те, которыми занимался сам Лебег. На эту тему уже имелась одна работа. Ее сделал молодой француз Гато, погибший на войне. К сожалению, он не охватил всего вопроса в целом, и, когда я попробовал продолжить его исследования, у меня создалось впечатление, что они ведут меня в неверном направлении.

Английский ученый П. Дж. Даниель, преподававший тогда в Институте Райс в Хьюстоне (Техас), тоже написал несколько статей, имевших отношение к интересующей меня задаче. Его работы понравились мне гораздо больше, чем статья Гато, и я решил взять их за основу. Однако Даниель не рассматривал специально семейства кривых, и моя попытка применить его методы к этим новым объектам сперва показалась мне самому надуманной и малоинтересной.

В то время я с жадностью набрасывался на различные научные журналы и в том числе просматривал «Труды Лондонского математического общества» (Proceedings of the London Mathematical Society). Там я наткнулся на статью Дж. И. Тейлора — впоследствии сэра Джефри Тейлора[21], — посвященную теории турбулентности. Вопросы турбулентности имеют первостепенное значение для аэродинамики и авиации, и сэр Джефри в течение многих лет считался столпом британской науки в этой области. Статья Тейлора близко соприкасалась с тем, что меня интересовало, так как в случае турбулентного движения траекториями частиц воздуха являются очень сложные кривые и окончательные результаты его статьи включают в себя понятие «осреднения», представляющее собой не что иное, как некоторый способ интегрирования по всей совокупности таких кривых.

Позднее, во время своих неоднократных поездок в Англию, я довольно хорошо познакомился с Тейлором. Это любопытный образец типично английского ученого-профессионала с глубокими знаниями, который ведет себя в науке как любитель. Тейлор — известный яхтсмен, у него наружность человека, проводящего большую часть жизни на свежем воздухе, самым замечательным своим достижением он считает изобретение нового типа якоря для яхт.

Познакомившись со статьей Тейлора, я более серьезно задумался о возможности физической теории, оперирующей понятием осреднения по множеству кривых. Проблема турбулентности была слишком сложной, чтобы немедленно приступить к атаке, но имелась другая родственная проблема, которая оказалась вполне подходящей для анализа, относящегося именно к той области, которую я для себя выбрал. Это была проблема броуновского движения, явившаяся предметом моей первой важной математической работы.

Чтобы понять, что такое броуновское движение, представим себе сперва игру в пушбол[22] на поле, кишащем игроками. Некоторые из них толкают мяч в одну сторону, некоторые в другую, и в результате большинство толчков гасят друг друга. Однако равновесие шара под действием противоположно направленных ударов будет все же лишь приближенным, так как не все толчки точно компенсируют друг друга. Поэтому шар будет все-таки медленно передвигаться по полю, причем движение его будет сильно напоминать движение пьяницы, о котором мы говорили выше. Иначе говоря, оно будет представлять собой пример беспорядочного движения, при котором будущие перемещения очень мало зависят от того, как двигался шар раньше.

Рассмотрим теперь молекулы жидкости или газа. Эти молекулы не находятся в покое, но совершают случайные, беспорядочные движения, подобные движению людей в толпе. Движение это будет тем более интенсивным, чем выше температура. Предположим, далее, что в жидкость помещен крохотный шарик, который отдельные молекулы толкают точно так же, как толпа игроков толкает мяч при игре в пушбол. Если наш шарик будет совсем уж крошечным, то мы его просто не сможем увидеть, а если он будет слишком большим, то столкновения молекул с ним будут в среднем весьма точно уравновешивать друг друга, так что они не вызовут никакого движения. Существует, однако, промежуточная область размеров, при которых наш шарик является достаточно большим, чтобы его можно было увидеть в микроскоп, и достаточно малым, чтобы толчки молекул вызвали его непрекращающееся беспорядочное движение. Это движение, отражающее непрекращающееся беспорядочное перемещение молекул, называется броуновским движением. Впервые его наблюдали в микроскоп ученые XVIII века, причем оказалось, что такое движение присуще всем без исключения достаточно малым частицам, наблюдаемым с помощью этого прибора.


стр.

Похожие книги