Все формулы мира - страница 15
Кажущаяся «магия» математики во многом связана с тем, что чаще всего люди видят лишь конечный результат. В самых разных областях и ситуациях, если мы не знаем о длительном процессе развития, об огромных усилиях, о пробах и ошибках, о множестве отброшенных вариантов, то удивленно восклицаем: «Как это у них получается!» Например, одежда из ткани, которая не горит, не протыкается ножом, но при этом легкая, удобная и теплая, поразила бы древнего человека. С его точки зрения, это практически чудо, но на самом деле– результат долгого, постепенного развития технологии. Это можно было бы ему продемонстрировать, начав с того, как делается нить из шерсти или хлопка, затем объяснить, как из этого ткется ткань, потом показать процесс создания искусственных нитей и т. д. и т. п.
Нелишне заметить, что подобные рассуждения верны не только для развития технологии и науки, но и для высокоорганизованных социально- политических структур. Устойчивые демократические общества пришли к такому состоянию в результате продолжительного и зачастую весьма болезненного развития, через периоды напряженной работы общества в целом, перемежаемые революциями и другими потрясениями.
Длительное и хотя бы относительно устойчивое развитие может приводить к удивительным по сложности результатам, если оценивать их исходя из начального состояния. «Чудеса» современной математики в этом смысле подобны «чуду глаза», чему мы посвятим отдельный разговор. Неоднократно сложность зрительного аппарата представляли в качестве аргумента против эволюции: «Как мог сразу возникнуть такой сложный орган?» Но глаз не возник одномоментно. Он – продукт длительной естественной эволюции без конечной цели, начавшейся с очень простых «устройств». В эволюционном процессе при каждом шаге обычно происходят не такие уж большие усовершенствования, призванные решить локальные проблемы.
Похожим образом развиваются и математика, и области ее применения в науке. Стартовав с простых (по современным меркам) и понятных задач, нередко носивших сугубо практический характер, математика за два тысячелетия достигла уровня, на котором лишь единицы узких специалистов могут реально разобраться в тех или иных самых современных результатах в своей области. Древние греки, начавшие писать первые уравнения, не думали о развитии математического аппарата для теории струн. При этом в биологической эволюции бывают и большие скачки, сопровождаемые массовым вымиранием одних видов и появлением или бурным развитием других. Такие события происходят и в развитии науки, в частности математики и физики.
Примеров «вымерших» теорий и моделей очень много. В физике это и уже упоминавшаяся выше геоцентрическая система мира, и теплород, и теория эфира. В математике можно вспомнить задачу о квадратуре круга, неразрешимость которой была доказана только в конце XIX века, и другие подобные проблемы, над решением которых бились веками (иногда получая попутно важные результаты). В борьбе конкурирующих моделей в естественных науках выживает более приспособленная – та, что лучше описывает реальный мир. В сегодняшней науке мы видим противостояние различных подходов к созданию квантовой гравитации, разных моделей ранней вселенной. Идут споры о необходимости гипотезы слабовзаимодействующих элементарных частиц, не входящих в так называемую Стандартную модель (т. е. гипотезы о темном веществе), для объяснения большого комплекса астрофизических данных. Продолжаются дискуссии о природе черных дыр – о процессах вблизи горизонта и под ним. Почти все из обсуждающихся моделей окажутся ошибочными, а потому со временем будут забыты. То же самое верно и для менее глобальных вопросов. Вообще, можно сказать, что активная научная деятельность существует, только если есть соперничество различных подходов к описанию или объяснению каких-то явлений. В этом смысле наука всегда находится в стадии становления. Она существует в относительно тонком переходном слое, отделяющем познанное от непознанного: впереди – темный лес, позади – учебники.