У электромагнитных волн высокой частоты (гамма- и рентгеновский диапазоны) в большей степени проявляются свойства частиц, а в радиодиапазоне, наоборот, заметнее волновые свойства. Например, в астрономии детекторы излучения в разных диапазонах спектра работают по принципиально разным методикам. В радиодиапазоне, где длина волны велика, приборы регистрируют именно волны (т. е. колебания электромагнитного поля), а детекторы гамма-квантов похожи на детекторы элементарных частиц. Однако в случае и малой, и большой длины волны можно поставить эксперименты, где будут проявляться как корпускулярные, так и волновые свойства[31]. Таким образом, «двойственная» природа света стала надежно подтвержденным фактом.
Думаете, на этом все закончилось? Вовсе нет – ягодки были еще впереди. Если про свет со времен Ньютона и Гримальди спорили, то про электроны (а заодно и другие частицы) – нет. Это же частицы! Оказалось, тоже не совсем. Эксперименты показали, что электроны также демонстрируют дифракцию и интерференцию, равно как и другие элементарные частицы. И даже не совсем элементарные. Современные эксперименты позволяют увидеть волновые свойства даже у довольно крупных молекул[32]. А в 2018 г. волновые свойства удалось непосредственно продемонстрировать и у частиц антивещества[33].
Такие «волны материи» называют волнами де Бройля в честь Луи де Бройля, впервые построившего соответствующую теорию. В общем и целом она заключается в том, что если две частицы имеют одинаковые скорости, то чем больше масса частицы, тем меньше длина соответствующей ей волны. Соответственно, тем сложнее наблюдать волновые свойства таких объектов. Если масса частицы равна так называемой массе Планка (примерно 0,00001 грамма), то соответствующая ей длина волны равна так называемой планковской длине (около 10>–33 см)[34].
Интересно представить себе, как мы переносимся в XVII век, усаживаем за один стол Ньютона и Гримальди и объясняем им (видимо, на латыни, придется брать с собой продвинутого гуманитария в качестве переводчика), что оба они правы. Конечно, педант вспомнит, что в год смерти Гримальди (1663) Ньютону было всего 20 лет, но это не остановит наш полет фантазии.
Описание поведения света и частиц существенно усложнилось за сотни лет, разделяющих времена Рене Декарта, впервые объяснившего радугу, и Эрвина Шрёдингера, заложившего основы волновой квантовой механики. Готов поспорить, что прогресс в этой области может заметить даже неспециалист, просто на глазок сравнив публикации XVII и XX веков.
А. ПО МЕРЕ РАЗВИТИЯ МАТЕМАТИКИ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ УРАВНЕНИЯ СТАНОВЯТСЯ СЛОЖНЕЕ: В ФИЗИКЕ ПОЯВЛЯЮТСЯ НОВЫЕ ПРОЦЕССЫ И ЯВЛЕНИЯ (ВКЛЮЧАЯ ГИПОТЕТИЧЕСКИЕ), НУЖДАЮЩИЕСЯ В ОПИСАНИИ, А В МАТЕМАТИКЕ ВОЗНИКАЮТ НОВЫЕ МЕТОДЫ И КОНСТРУКЦИИ.
Б. ФИЗИЧЕСКИЕ МОДЕЛИ ЯВЛЕНИЙ СТАНОВЯТСЯ СО ВРЕМЕНЕМ ВСЕ СЛОЖНЕЕ, ПОСКОЛЬКУ ОПИСАНИЕ СТАНОВИТСЯ БОЛЕЕ ДЕТАЛЬНЫМ И КОМПЛЕКСНЫМ: В НЕГО ВКЛЮЧАЮТСЯ ВСЕ НОВЫЕ ЭФФЕКТЫ И ВСЕ БОЛЕЕ МЕЛКИЕ ДЕТАЛИ.
Глава 6
Возрастание сложности
Одной из самых ярких иллюстраций усложнения науки является исчезновение ученых-универсалов. Теперь трудно не то что работать в нескольких разных областях, но даже внутри своей науки (физики, биологии, химии, математики, да даже астрофизики) практически невозможно разбираться на профессиональном уровне в очень широком круге проблем. Как у животных по мере совершенствования в ходе эволюции нередко сужаются ареалы обитания, так и ученые занимают свои небольшие экологические ниши. И это очевидная общая тенденция. Раньше один механик мог разобраться в любой проблеме в гоночной машине, теперь же специалист по коробке передач вряд ли сможет исправить сбой в бортовом компьютере болида «Формулы-1». Раньше один врач лечил от всех болезней, а теперь для каждого органа нужен свой доктор (а то и не один).
Сравнив научные приборы начала и конца XX века, любой сделает вывод о том, что прогресс есть, причем довольно стремительный. Тут даже не надо быть специалистом. Посмотрите на первый ускоритель, построенный в начале 1930-х гг. и помещавшийся на столе, а теперь сравните его с… – читатель ждет уже продолжения «с Большим адронным коллайдером». Ну так с ним и сравните! Посмотрите на первые радиотелескопы (тоже, кстати, 1930-х гг.) и на систему ALMA