Время вспять - страница 52
Поведение самого начальника лаборатории ускорителей тоже меня беспокоило: его отношение к жесткой фокусировке, отрицательное вначале, перешло в энтузиазм как раз тогда, когда начали выясняться все ее трудности. Я не мог отделаться от мысли, возможно несправедливой, что он сомневается в своих способностях построить машину на 3 ГэВ любого типа и считает менее унизительным провалить осуществление нового неиспробованного проекта, такого, как жесткая фокусировка, чем аналогичного Брукхейвенскому космотрону, уже успешно построенному в Америке. Я знал физиков, всегда занятых почти невозможными экспериментами, которые принесли бы им мировую славу в случае почти невозможного успеха и не грозили повредить их репутации в случае более чем вероятной неудачи. Я назвал это "синдромом такси" в связи со следующим анекдотом. Человек приходит домой и докладывает жене: "Я заработал сегодня два франка: автобус отъехал до того, как я успел вскочить в него; я побежал за ним до следующей остановки, но опять не успел сесть, и так пробежал за ним всю дорогу до дома". — "Вот дурак, — говорит жена, — почему же ты не бежал за такси, заработал бы двадцать франков".В конце концов я предложил выбрать мягкую фокусировку и не только из-за неуважения к "синдрому такси". Для машины в диапазоне от 2 до 3 ГэВ при выборе жесткой фокусировки экономия на весе магнита — слишком малая доля стоимости всей машины, чтобы оправдать связанный с ним риск. Так и сделали. Машина была запущена в 1958 году и получила название "Сатурн". В семидесятых годах она была перестроена на жесткую фокусировку и работает по сей день. Стоит заметить, что англичане оказались гораздо боязливее меня. Свою машину "Нимрод" они начали строить тоже на мягкой фокусировке через три года после нашей, когда никто более не сомневался в целесообразности жесткой фокусировки, тем более для энергии 7 ГэВ, для которой экономия, связанная с жесткой фокусировкой, была гораздо значительней. Между 1953 и 1956 годами электронные и протонные ускорители начали расти повсюду, как грибы. Я не собираюсь перечислять здесь все ускорители, которые сегодня работают, строятся или проектируются на земном шаре. Их перечень можно найти во многих публикациях. Я хочу лишь сказать несколько слов о проблемах, связанных со стремлением ко все более высоким энергиям.*Для ускорителей типа синхротрона энергия пропорциональна произведению управляющего магнитного поля на радиус орбиты, по крайней мере для частиц ультрарелятивистских энергий, превышающих во много раз их массу покоя. Масса покоя равна приблизительно 1 ГэВ для протонов и в 2000 раз меньше, т. е. 0,5 МэВ, для электронов. Для протонов с магнитными полями в несколько тесла, производимыми сверхпроводящими магнитами, и при радиусе порядка километра энергии порядка 1 ТэВ (1000 ГэВ) получены в американской лаборатории Фермилаб (Fermilab) на машине "Теватрон". Существует в Америке проект на машину 20 ТэВ с радиусом 80 километров, так называемый ССК (сверхпроводящий суперколлайдер, SSC Superconducting Supercollider). Для электронных синхротронов (как уже было сказано в главе "Накануне") нереалистично мечтать об энергиях выше 100 ГэВ из-за радиационных потерь, и только линейные электронные ускорители позволят (может быть) достичь высших энергий. Новой чертой ультрарелятивистских ускорителей является то, что их используют в качестве так называемых коллайдеров. Вместо того чтобы направлять пучок частиц на неподвижную мишень, сталкивают два встречных пучка. При этом, конечно, происходит громадная потеря интенсивности, и непосвященным не всегда понятно, зачем так делают. Я хотел бы изложить элементарное, чтобы не сказать грубое, объяснение, которое я выработал для самого себя (оказалось, что оно пришло в голову не только мне). Ключевым здесь является слово "ультрарелятивистский". Частица с такой энергией, сталкиваясь с неподвижной частицей мишени, в лабораторной системе координат "выглядит" во много раз "тяжелее" ее, и их столкновение, подобное удару бильярдным шаром по горошине, конечно, не способно разбить ни ту, ни другую. В коллайдере, наоборот, столкновение двух частиц подобно столкновению двух бильярдных шаров, в котором оба могут разбиться, что и является целью эксперимента. Конечно, существуют расчеты, подтверждающие эти примитивные рассуждения.*Перед тем как расстаться с гигантскими машинами, где я "сижу не в своих санях", напомню, как урок для авторов грандиозных проектов, о грустной истории фазотрона в Дубне, машины (строительство которой было начато в 1949 году и предусматривало мягкую фокусировку), которая мечтала стать самой великой в мире, но оказалась лишь самой тяжеловесной, "линкором" в 35000 тонн. В 1953 году, когда появилась жесткая фокусировка, единственным разумным решением было бы отказаться от злополучного "динозавра" и построить новую машину. Я думаю, что моим советским читателям понятен сарказм, изливаемый бедными советскими физиками высоких энергий на это неуклюжее животное, с которым они должны были мириться. "У нас самая большая пушка, которая никогда не стреляла, самый большой колокол, который никогда не звонил, и самый большой ускоритель… " Фазотрон лишь один пример абсурдного мышления, согласно которому, если какое-либо строительство перевалило за половину, его уже нельзя не довести до конца, даже если его нелепость стала очевидной для всех. Это, конечно, может случиться и случалось в любой стране. Английский "Нимрод" не так далек от фазотрона в Дубне. Нам тоже не стоит заноситься. В семидесятых годах в Париже в квартале Ла Вилет (La Villette) начали строить гигантскую скотобойню. Авторы проекта полагали, что со всех концов Франции сюда будут привозить на убой живой скот. Безумный проект, наконец, остановили, но уже был построен исполинский "холл", где должны были толпиться легионы рогатых. Единственным разумным шагом было бы снести его и посыпать пеплом его руины. Но разве мыслимо не использовать грандиозное здание! Чтобы оправдать холл, который обошелся в миллиард франков, в помещении, для этого не предназначенном и совсем для этого не подходящем, соорудили грандиозный Музей науки. Предприятие обошлось в 5 или 6 миллиардов франков, а его содержание стоит больше миллиарда в год. Музей науки — конечно, прекрасная вещь, но своим масштабом он обязан дурацкому скотному холлу. За полцены можно было бы построить полдюжины прекрасных музеев для главных городов страны. Но надо было использовать холл!! Еще пару слов про еще один гигантский проект. В моем возрасте можно оставить излишнюю осторожность тем, кто еще должен заботиться о своей карьере, и я позволю себе удовольствие сказать, что я думаю об американском проекте ССК с энергией 20 ТэВ и радиусом 80 километров. Я не страдаю манией величия и прекрасно понимаю, что ничто из того, что я скажу или напишу не может иметь ни малейшего влияния на судьбу этого чудовища, которая будет решена, когда появятся на свет эти строки. Все равно. Я считаю, что этот неуклюжий и грандиозный проект недостоин великой американской нации. Я не вижу в нем ни одной новой идеи. ССК — не что иное, как двадцать тева-тронов, каждый из которых уже самая большая машина в мире, расставленных один за другим. Можно употребить следующее сравнение: представьте себе, что в начале пятидесятых годов, т. е. до открытия транзистора, собрались бы построить суперкомпьютер в двадцать раз более мощный, чем наибольший из существующих тогда, увеличивая в двадцать раз число электронных ламп. Вот, по-моему, что такое ССК.
Вручив властям доклад Группы Орбиты, я вернулся к мыслям о самой "легкой" области физики, т. е. к ядерным спинам; в частности, к задаче, которой суждено было меня занимать в течение немалой части моей жизни: ядерная поляризация и ее применения.• *Если методы ЯМР позволяют сегодня "видеть человека насквозь", то прежде всего потому, что под влиянием магнитного поля пациент, введенный в широкий зазор томографического магнита (как и любой образец в любом магните), приобретает так называемую ядерную поляризацию, т. е. избыток ядерных магнитных моментов, направленных вдоль магнитного поля по сравнению с теми, которые направлены ему навстречу. (Поляризация равна единице, когда все спины параллельны полю.)Ядерная поляризация зависит от абсолютной температуры образца: чем выше температура, тем эффективнее беспорядочное тепловое движение противится действию магнитного поля, которое старается выстроить все ядерные магнитные моменты параллельно себе. При полях, встречающихся в лабораториях ЯМР, при комнатной температуре образец, например наш пациент, будет обладать протонной поляризацией не выше нескольких миллионных долей. Но для подавляющего большинства применений ЯМР этого вполне достаточно. Но есть в физике задачи, которые требуют ядерной поляризации гораздо большей: например, излучение радиоактивных ядер. Выше говорилось об угловых ядерных корреляциях: испускание первой частицы создает привилегированное направление, по отношению к которому угловое распределение второй частицы обладает анизотропией, из которой можно извлечь полезную информацию. Но физикам-ядерщикам иногда желательно создать анизотропию прямым путем, не прибегая к угловым корреляциям, что может быть достигнуто благодаря высокой поляризации спинов радиоактивных ядер. Подход к этой задаче возможен с двух концов: понижением температуры и повышением поля. И в обоих направлениях надо пройти довольно далеко, если желательна поляризация порядка единицы. Чтобы перейти от поляризации в несколько миллионных долей до, скажем, нескольких процентов, можно, например, понизить температуру от комнатной до 1 К и повысить поле от 1 до 100 Тл. В 1954 году, о котором сейчас идет речь, первое легко достигалось откачкой паров жидкого гелия, но второе не достигнуто и до сих пор. Поэтому в 1948 году голландцем Горте-Р м и американцем Роузом (Rose) был (независимо друг от друга) предложен иной способ. Использовалось очень высокое сверхтонкое поле, создаваемое магнитными электронами парамагнитного атома в том месте, где находится ядро. Остроумное изменение этого метода, предложенное Блини в 1951 году, вскоре сделало возможным первое наблюдение в Оксфорде анизотропного излучения радиоактивного кобальта. Меня терзало то, что не был в Оксфорде, когда там производились исследования, столь близкие моим собственным интересам. Другой проблемой, о которой я размышлял, было точное измерение с помощью ЯМР магнитного поля Земли, очень важное для геофизики. Его малая величина, менее 0,5 Гс, приводит к протонной поляризации менее одной миллиардной, недоступной дляЯМР.*Я изучал все публикации о ЯМР и мечтал о своей собственной лаборатории, где я мог бы испробовать идеи, которые приходили мне в голову. Я заразил своим энтузиазмом своего лучшего сотрудника в Группе Орбиты Ионеля Соломона. Я сговорился с Парселлом и Паундом насчет его пребывания в Гарварде в течение года и добился его командировки туда администрацией КАЭ. Мы надеялись иметь первый набросок лаборатории к его возвращению. Пока одной из задач, которая меня занимала, был все тот же эффект Оверхаузера, или динамическая ядерная поляризации в металлах. Я старался упростить сложные вычисления Оверхаузера и распространить теорию его эффекта на диэлектрики. Естественно было объединиться в этих исследованиях с лабораторией Кастлера и Бросселя в Высшей нормальной школе. Там тоже экспериментировали с резонансом и были заинтересованы в получении высоких ядерных поляризаций. Но были два важных различия. Во-первых, они имели дело с парами атомов, где плотности в миллионы раз меньше, чем в жидких и твердых телах, которыми интересовался я. Во-вторых, они использовали оптические лучи, чтобы производить высокие поляризации методом, названным Кастлером оптической накачкой, а также чтобы детектировать резонанс. Известно, что эти работы принесли Кастлеру Нобелевскую премию, которую, по-моему (как и по мнению самого Кастлера), лучше было бы разделить между ним и Бросселем. Осенью 1954 года произошли два события, которые повлияли на мою деятельность. В лабораторию Кастлера приехал на год американский физик, которого я назову Арни (Arnie), как он сам представлялся. Он был учеником Чарльза Таунса, который тогда еще не совершил своего великого открытия — лазера. Арни появился в ореоле открытия, только что опубликованного в "Physical Review Letters", которое могло показаться фантастическим, по крайней мере, тем, которые, как я, интересовались ядерной поляризацией. Он утверждал, что в кристалле кремния, легированного мышьяком, ему удалось создать стопроцентную поляризацию ядер мышьяка. Его метод, вариация на тему эффекта Оверхаузера, заключался в насыщении четырех линий сверхтонкой структуры мышьяка. (Я не поставил звездочки потому, что, даже если читатель не понял ни слова из предыдущей фразы, это нисколько не повлияет на его понимание того, что следует.) Все в его статье было объяснено очень ясно и убедительно. За статьей Арни следовала вторая, написанная его коллегой, теоретиком, в которой давалось более подробное теоретическое изложение. Кастлер читал статью и был ею убежден вполне. Броссель прочел "письмо" и был убежден. Я прочел письмо и был тоже убежден. Перечитал я ее потому, что нашел маленькую неясность и понял немножко хуже. Я начал ее перечитывать вновь и вновь, и раз от разу статья становилась менее и менее понятной, пока не превратилась под конец в полную бессмыслицу. Создалось неловкое положение: Кастлер понимал, Броссель понимал, а я, специалист по резонансу и ядерной поляризации, не понимал ничего. Прошел мимо Пьер Эгрен, восходящая звезда французской физики, впоследствии крупный деятель и даже министр, который понимал все, что можно понять, и даже больше. Он прочел статью, понял, конечно, и объяснил ее очень наглядно с помощью акустической аналогии с так называемой трубкой Кундта (Kundt). Я не помнил, как устроена трубка Кундта, и ушел из Нормальной школы, где все это происходило, в отвратительном настроении. Просидев еще день над таинственной статьей Арни, я сумел, наконец, точно определить, где была "зарыта его собака", и выкопать ее на Божий свет. Экспериментальный результат, полученный Арни, надо было истолковать как перенос поляризации между разными сверхтонкими компонентами ЭПР спектра мышьяка, результат не лишенный интереса, но, конечно, не имевший ничего общего со стопроцентной поляризацией ядер, как Арни уверил себя и не безуспешно пытался уверить других. Мне пришлось провести с ним полдня, чтобы разуверить его. Оставалась еще тайна: каким образом рецензент "Physical Review Letters" пропустил в печать подобную статью без малейшего возражения и почему руководитель Арни, весьма известный физик (не Таунс), поссорился с ним потому, что Арни отказался разделить с ним авторство. (На самом деле ему здорово повезло.) Эта слепота весьма компетентных людей, по-моему, объясняется так: после того как люди отказались поверить предсказаниям Оверхаузера, которые, тем не менее, оказались правильными, они были психологически подготовлены поверить чему угодно. К тому же софизм в рассуждениях Арни было не так легко заметить. Красочная личность Арни заслуживает нескольких слов. Хо-ренастый, с походкой вразвалку, с курчавой нечесаной башкой цвета воронова крыла, со смехом, подобным ржанию застоявшегося жеребца, мохнатый, как обезьяна, с брюками, спадавшими до "тропика Козерога", он был замечательно свободен от запретов, связанных с тем, что в моей юности называлось приличными манерами. Он решил сразу приобщиться к французской культуре, приобретя берет, который не снимал со своей головы, и говорил на странном наречии, которое считал французским языком. Его выражения стали классическими среди нас, но, к сожалению, непереводимыми. Я мог бы рассказать про него кучу историй. Например, во время поездки из Лондона в Оксфорд в битком набитом купе во всеуслышание, к возмущению британцев, он рассказывал мне следующий анекдот. В верующее еврейское семейство приходит сват и с большим трудом убеждает их согласиться на брак их старшего сына с принцессой Маргарет, младшей дочкой английского короля. Когда это ему, наконец, удается, он произносит со вздохом облегчения: "Половина работы сделана". Только традиционная сдержанность британской нации спасла нас тогда от линчевания. Но моя любимая история — про ужин, который он устроил у себя на квартире вскоре после своего приезда. Среди гостей были профессор Кастлер с супругой, я с Сюзан и еще несколько пар. Накануне он попросил у своей хозяйки несколько лишних вешалок и, когда она невинно спросила, нужны ли ему вешалки с перекладинами для брюк, ответил: "Не знаю, в Париже у меня гости в первый раз". Я так много говорю про Арни потому, что воспоминания о нем меня все еще забавляют, но более того из-за размышлений, на которые меня навела необходимость опровергнуть его абсурдные заключения. Благодаря им я продвинулся к своей тогда еще отдаленной цели: динамической ядерной поляризации в диэлектриках. Но осенью 1954 года состоялось другое событие. Феликс Блох, великий Феликс Блох, стал первым Генеральным директором ЦЕРН'а и пригласил меня провести с ним несколько месяцев в Женеве. Выбор первого директора был не прост: можно было опасаться, что страна, к которой он принадлежит, возьмет благодаря этому перевес в международной организации. Выбрали Блоха, уроженца Швейцарии, но жителя и гражданина Америки и, к тому же, крупнейшего физика. Одно было нехорошо в этом выборе: Блох недолюбливал "тяжелую" науку и ненавидел администрацию. Осенью 1954 года большие машины были еще лишь в состоянии проектов или, в лучшем случае, земляных работ, и оставалась администрация, от которой его тошнило. Он принял предложение ЦЕРН'а из-за симпатии к старой Европе, к которой он оставался близок после двадцати лет "изгнания", и к идее ЦЕРН'а как общеевропейского предприятия. Но надо признать, что в Женеве он скучал. Ему хотелось иметь около себя кого-нибудь, с кем можно было бы говорить о своем любимом ЯМР, "дружескую руку", как он выразился, и я был польщен тем, что из всей Европы он выбрал меня. В этом выборе мои скромные заслуги в области ускори-телей, про которые он, наверное, никогда не слышал, не играли никакой роли; поводом был только резонанс. Он хотел располагать мною в течение шести месяцев, но КАЭ, который оплачивал мою командировку в Женеву, предложил месяц; сговорились на двух. Мы сошлись характерами, хотя он был капризен, как примадонна, и сразу стали друзьями. Он был всем тем, о чем я мечтал и чего никогда не достиг, отчасти из-за обстоятельств моей молодости (в возрасте, когда я бегал по следам неуловимого Перрена, он общался с такими гениями, как Бор, Гейзенберг, Паули и т. д.), но главным образом потому, что у меня не было и доли его гения. В "Reflections of a Physicist" я посвятил ему несколько страниц. Здесь я лишь напомню, что, кроме более чем заслуженной Нобелевской премии за открытие ЯМР, он сделал еще два или три открытия, каждое из которых было достойно этой награды. Он был высок, широкоплеч и силен, со сложением боксера-тяжеловеса. Его нос был, вероятно, когда-то сломан, что увеличивало сходство с боксером. Он был прекрасным горнолыжником и опытным альпинистом. Он обогатил мою коллекцию историй о Паули, рассказав мне, как это сделал Вайскопф до него, о встрече с великим физиком в Цюрихе. В отличие от Вайскопфа, которому было только сказано: "Сделайте что-нибудь и приходите мне показать", Блох получил более подробные инструкции: "Сделайте мне теорию сверхпроводимости". Блох уселся за работу и через десять дней принес плоды своих трудов Паули, которому не понадобилось и десяти минут, чтобы разнести их в клочья. Вторая и третья попытки имели ту же судьбу. За свое пребывание в Цюрихе Блох сделал десяток подобных безуспешных попыток. "Теперь", — сказал Блох, — "когда кто-нибудь мне приносит теорию сверхпроводимости (не надо забывать, что наш разговор происходил в 1954 году), я просто замечаю, что это моя попытка номер такой-то".Он сформулировал две теоремы (скорее, два постулата): первый — все теории сверхпроводимости ошибочны; второй — все крупные ускорители в конце концов работают. Опираясь на второй постулат, он не боялся посвящать немалую часть своего времени в Женеве усилиям доказать неверность первого; его не оставляла надежда справиться когда-нибудь с заданием Паули. Можно сказать, что оба постулата оказались неверными в конце концов. Фазотрон Дубны никогда не работал по-настоящему, и в 1957 году Бардин, Купер и Шриффер предложили то, что по-русски носит смешное название "бекаша" (вроде бекеши). Бекаша была не по вкусу Блоху, но он с ней примирился, так как ничего лучшего предложить не мог. Во время своего пребывания в Женеве он заканчивал работу об установлении основного уравнения для спиновой матрицы плотности системы спинов во взаимодействии с решеткой (читатель, если сие не понятно, не горюй), ту самую работу, которую я сам хотел предпринять в Гарварде и, как дурак, забросил, наслушавшись чужих советов. Работа была внушительной, хотя слегка, и даже более чем слегка, тяжеловесной, и была опубликована позже в трех увесистых статьях в "Physical Review". Блох запросил мое мнение о работе, и я выразил грандиозность предприятия одним словом: "Gottverdammerung".