Восемь этюдов о бесконечности. Математическое приключение - страница 76

Шрифт
Интервал

стр.

Конкретное описание множества Кантора дается в следующем задании.

Простая головоломка

Покажите, что в троичном представлении всех точек множества Кантора не используется цифра 1.

Теперь легко видеть, что мощность множества Кантора равна ℵ, потому что в множество Кантора входят только те числа, в троичном представлении которых используются только цифры 0 и 2. Тем не менее ясно, что это множество чисел имеет такую же мощность, что и множество чисел, которые можно записать с использованием только цифр 0 и 1. Запись чисел с использованием только цифр 0 и 1 – это попросту двоичный способ записи чисел, и таким образом можно записать все числа, заключенные между 0 и 1. Следовательно, мы приходим к выводу, что множество Кантора имеет ту же мощность, что и множество всех чисел отрезка [0,1], а значит, его мощность равна ℵ.

Этот факт весьма удивителен, так как множество Кантора не имеет никакой длины. Действительно, сумма длин всех отрезков, которые мы удаляем, равна:



Таким образом, длина множества Кантора есть результат вычитания из 1 суммарной длины всех этих отрезков, то есть 1, а следовательно, длина множества Кантора равна 0.

Множество Кантора – действительно очень необычный объект. Оно содержит невычислимое количество точек – суммарная длина которых равна нулю! – которые находятся на множестве отрезков прямой! Кроме того, множество Кантора считают первым фракталом. Но этой теме придется подождать другой книги.

ЕЩЕ НЕМНОГО О ПРЕДСТАВЛЕНИИ ЧИСЕЛ

Между прочим, число 1 можно записать в троичном представлении как 0,2222… а в десятичном – как 0,999999… Когда я пишу, что 1 = 0,999999… многие удивленно поднимают бровь (или даже обе). Они пытаются объяснить мне, что это неверно, что 1 хоть совсем ненамного, но все же больше, чем 0,999999…

Чаще всего бывает почти невозможно убедить кого-нибудь в моей правоте. Но это не значит, что я не попытаюсь это сделать.

Попробуйте вычесть 0,9999… из 1. Что у вас получается? Если ваш результат хоть на сколько-нибудь отличается от нуля, значит, вы совершаете логическую ошибку.

Или же попробуем сделать вот что. Пусть a = 0,9999999… В таком случае 10a = 9,999999… Вычтя одно число из другого, получим 10 a – a = 9,999999… – 0,999999… А это превосходным образом дает 9a = 9, то есть a = 1.

Если уж и это вас не убедило, мне очень жаль.

Заключение

У книги о бесконечности не может быть конца; бесконечность – это нескончаемая история. Поэтому я не стану писать заключения, а дам вам одну очень красивую задачу, и вы сможете обдумывать ее столько, сколько захотите.

Взгляните на следующее равенство:


1/9801 = 0,00010203040506070809101112131415161718192021

2223242526272829303132333435363738394041424344

4546474849505152535455565758596061626364656667

6869707172737475767778798081828384858687888990

919293949596979900010203…979900010203…


Видите, что тут происходит?

Не видите?

Ну хорошо.

Вот вам то же самое, но в лучшем разрешении:


1/9801 =0,00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

97 99 00 01 02 03…97 99 00 01 02 03 04 05 06… ad infinitum[61].


Мы получили все двузначные числа, расположенные в правильном порядке (!) и повторяющиеся до бесконечности, кроме числа 98.

Головоломка

Почему отсутствует число 98?

Действительно ли отсутствует число 98?

Что получится, если рассмотреть 1/1089?

Что получится, если рассмотреть 1/998 001?

А завершу я текст этой книги своим любимым словом:

ПОЧЕМУ?

Выражение благодарности

Прежде всего я хотел бы поблагодарить Итана Ильфельда за веру в меня и в мои книги.

Я хотел бы воздать благодарность моей верной переводчице Линде Иехиэль.

Я хотел бы выразить особую признательность Алену Деккеру, никогда не перестававшему спорить со мной, за огромную помощь и терпение.

Я чрезвычайно благодарен Тому Бенаму, специалисту по теории множеств, за мудрое редактирование моей книги и множество блестящих идей.

Кроме того, я хотел бы поблагодарить ответственного за издание этой книги, Слава Тодорова, и выразить свою признательность всем сотрудникам издательства Watkins, работавшим над ней.


стр.

Похожие книги