Арифметика кардинальных чисел
Надеюсь, теперь вам ясно, что термины «мощность» или «кардинальное число» – это просто обобщение концепции «количества элементов», применяемой для конечных множеств, на множества бесконечные. Количество элементов конечных множеств обозначается натуральными кардинальными числами, но интуитивно понятно, что кардинальные числа также определяют количество элементов в бесконечных множествах. Например, если мощность некоторого множества – ℵ>0, то в нем содержится такое же количество элементов, как и в множестве натуральных чисел.
На уроках математики мы заучили, что над конечными числами можно производить математические операции – например сложение, деление и умножение. Такие же базовые операции можно определить и для множеств. В самом деле, когда мы складываем два натуральных числа, мы, по сути дела, «объединяем» их; эта операция аналогична объединению двух непересекающихся множеств (непересекающимися называются множества, не имеющие общих элементов). Если в одном множестве m элементов, а в другом – n элементов, то объединение этих двух множеств будет содержать n + m элементов.
Приведем один простой пример:
Если A = {Q, W, E, R, T, Y}, а B = {17, 21}, то A∪B = {Q, W, E, R, T, Y, 17, 21}.
В этом случае #A = 6, а #B = 2; следовательно, #A∪B = 6 + 2 = 8.
Операции с кардинальными числами работают точно так же. Например, чтобы вычислить сумму ℵ>0 + ℵ>0, нужно взять два непересекающихся множества, причем оба они должны быть счетными, и посмотреть, какую мощность будет иметь их объединение. Из приведенного примера мы увидим, что результат не зависит от того, какие именно множества мы выберем.
Например, возьмем A = (1, 3, 5, 7, 9, 11…) и B = (2, 4, 6, 8, 10…). Множества А и В не пересекаются, а мощность каждого из них, разумеется, равна ℵ>0.
Как вы видите, A∪B = N, то есть их объединение дает множество всех натуральных чисел, мощность которого, как мы знаем, равна ℵ>0.
Итак, получается, что ℵ>0 + ℵ>0 = ℵ>0. Собственно говоря, мы не открыли ничего нового: мы уже знали, что объединение двух счетных множеств также является счетным множеством.
Но тут нужна осторожность! Не следует увлекаться и думать, что к бесконечным значениям можно применять все правила обычной математики. Например, хотя ℵ>0 + ℵ>0 = ℵ>0, мы не можем вычесть из обеих частей этого равенства по ℵ>0, потому что тогда мы получили бы бессмысленное и, честно говоря, довольно нелепое выражение ℵ>0 = 0! Поэтому следует помнить, что обращение с бесконечными значениями требует некоторой осмотрительности.
Операцию умножения также можно описать в применении к множествам. Когда мы умножаем натуральное число n на m, эта операция на самом деле представляет собой обычное сложение n с самим собой, произведенное m раз, то есть n + n + + … + n = n · m. Преобразуем этот же принцип для множеств: если у нас есть два множества А и В, мы возьмем «В экземпляров» А в том смысле, что к каждому элементу b множества В мы прибавим экземпляр множества А. Например, если A = {Q, W, E, R, T}, а B = {17, 21, 33}, то произведением этих множеств будет объединение экземпляра множества А для числа 17, экземпляра А для 21 и экземпляра А для 33. Это можно записать следующим образом:
A × B ={< Q,17 >,< W,17 >,< E,17 >,< R,17 >,< T,17 >}∪{< Q,21 >,< W,21 >,< E,21 >,< R,21 >,< T,21 >}∪{< Q,33 >,< W,33 >,< E,33 >,< R,33 >,< T,33 >}.
Множество A × B содержит 15 элементов, что точно соответствует произведению числа элементов множества А и числа элементов множества В. Но для случая бесконечных множеств мы теперь можем утверждать, что ℵ