Метод оценивания
Все программы, кроме программыHopfield.
При построении метода обучения Вы пользуетесь следующей схемой:
В данной программе принят способ кодирования ответа номером канала: номер того из пяти ответных нейронов, который выдал на последнем такте функционирования наибольший сигнал, задает номер класса, к которому сеть отнесла предъявленный образ. Оценка, таким образом, может быть вычислена только для задачи, ответ которой известен.
Данная программа предусматривает два различных способа оценивания решения. Различие в способах оценки связано с различием требований, накладываемых на обученную сеть. Пусть пример относится к N-ой задаче. Тогда требования можно записать так:
Метод наименьших квадратов (Программа Pade)
N-ый нейрон должен выдать на выходе 1.
Остальные нейроны должны давать на выходе 0 (как можно более близкое к 0 число).
Метод наименьших квадратов (Программы Sigmoid и Sinus).
N-ый нейрон должен выдать на выходе 1 (поскольку сигнал 1 для нейрона невозможен (см. Нейрон), то число как можно более близкое к 1).
Остальные нейроны должны давать на выходе –1 (как можно более близкое к –1 число).
Расстояние до множества
В этом случае требование только одно — разница между выходным сигналом N-го нейрона и выходными сигналами остальных нейронов должна быть не меньше уровня надежности.
Таким образом, для Метода наименьших квадратов оценка примера N-ой задачи равна
H = (Сумма по I<>N от 1 до 5 (A[I]+1)^2)) + (A[N]-1)^2
и является обычным Евклидовым расстоянием от правильного ответа до ответа, выданного сетью.
Как следует из названия второго метода оценивания, вычисляемая по этому способу оценка равна расстоянию от выданного сетью ответа до множества правильных ответов. Множество правильных ответов для примера N-ой задачи задается неравенствами
A[N]-R > A[I], для всех I<>N.
Предобработка входных данных
Все программы, кроме программы Hopfield.
Входные данные задачи распознавания черно-белых изображений представляют собой последовательность 0 и 1 (есть точка — 1, нет — 0). Такие данные не всегда оптимальны для решения задачи распознавания. В связи с этим возникает задача предобработки данных. Возможны различные виды предобработки — преобразования Фурье, построение различных инвариантов и т. п. В этой программе предусмотрено несколько видов предобработки:
Чистый образ
Сдвиговый автокоррелятор
Автокоррелятор сдвиг+отражение
Автокоррелятор сдвиг+вращение
Автокоррелятор сдвиг+вращение+отражение
В результате предобработки получается не только более информативный вектор входных сигналов, но иногда и вектор меньшей размерности. Кроме того, вектор входных сигналов, полученный предобработкой типа "сдвиговый автокоррелятор" является инвариантным к сдвигу.
Чистый образ
Все программы, кроме программы Hopfield.
Это «пустая» предобработка — никакой предобработки не производится.
Сдвиговый автокоррелятор
Все программы, кроме программы Hopfield.