Учебное пособие по курсу «Нейроинформатика» - страница 32

Шрифт
Интервал

стр.

).

Нейронная сеть вычисляет некоторую вектор-функцию F от входных сигналов. Эта функция зависит от параметров сети. Обучение сети состоит в подборе такого набора параметров сети, чтобы величина была минимальной (в идеале равна нулю). Для того чтобы нейронная сеть могла хорошо приблизить заданную таблично функцию f необходимо, чтобы реализуемая сетью функция F при изменении входных сигналов с x>i на x>j могла изменить значение с f>i на f>j. Очевидно, что наиболее трудным для сети должно быть приближение функции в точках, в которых при малом изменении входных сигналов происходит большое изменение значения функции. Таким образом, наибольшую сложность будет представлять приближение функции f в точках, в которых достигает максимума выражение . Для аналитически заданных функций величина называется константой Липшица. Исходя из этих соображения можно дать следующее определение сложности задачи.

Сложность аппроксимации таблично заданной функцииf, которая в точках x>i принимает значения f>i, задается выборочной оценкой константы Липшица, вычисляемой по следующей формуле:

(2)

Оценка (2) является оценкой константы Липшица аппроксимируемой функции снизу.

Для того, чтобы оценить способность сети заданной конфигурации решить задачу, необходимо оценить константу Липшица сети и сравнить ее с выборочной оценкой (2). Константа Липшица сети вычисляется по следующей формуле:

(3)

В формулах (2) и (3) можно использовать произвольные нормы. Однако для нейронных сетей наиболее удобной является евклидова норма. Далее везде используется евклидова норма.

В следующем разделе описан способ вычисления оценки константы Липшица сети (3) сверху. Очевидно, что в случае  сеть принципиально не способна решить задачу аппроксимации функции f.

Оценка константы Липшица сети

Оценку константы Липшица сети будем строить в соответствии с принципом иерархического устройства сети, описанным в главе «Описание нейронных сетей». При этом потребуются следующие правила.

Для композиции функций fg=f(g(x)) константа Липшица оценивается как произведение констант Липшица:

Λ>fg ≤  Λ>fΛ>g (4)

Для вектор-функции f=(f>1, f>2, … f>n) константа Липшица равна:

(5)

Способ вычисления константы Липшица

Для непрерывных функций константа Липшица является максимумом производной в направлении r=(r>1, …, r>n) по всем точкам и всем направлениям. При этом вектор направления имеет единичную длину:

Напомним формулу производной функции f(x>1, …, x>n) в направлении r:

(6)

Синапс

Обозначим входной сигнал синапса через x, а синаптический вес через α. Тогда выходной сигнал синапса равен αx. Поскольку синапс является функцией одной переменной, константа Липшица равна максимуму модуля производной — модулю синаптического веса:

Λ>s=|α| (7)

Умножитель

Обозначим входные сигналы умножителя через x>1, x>2 Тогда выходной сигнал умножителя равен . Используя (6) получаем . Выражение r>1x>2+r>2x>1 является скалярным произведением векторов (r>1, r>2) и, учитывая единичную длину вектора r, достигает максимума, когда эти векторы сонаправлены. То есть при векторе

Используя это выражение, можно записать константу Липшица для умножителя:

(8)

Если входные сигналы умножителя принадлежат интервалу [a,b], то константа Липшица для умножителя может быть записана в следующем виде:

(9)

Точка ветвления

Поскольку в точке ветвления не происходит преобразования сигнала, то константа Липшица для нее равна единице.

Сумматор

Производная суммы по любому из слагаемых равна единице. В соответствии с (6) получаем:

(10)

поскольку максимум суммы при ограничении на сумму квадратов достигается при одинаковых слагаемых.

Нелинейный Паде преобразователь

Нелинейный Паде преобразователь или Паде элемент имеет два входных сигнала и один выходной. Обозначим входные сигналы через x>1, x>2. Используя (6) можно записать константу Липшица в следующем виде:

Знаменатель выражения под знаком модуля не зависит от направления, а числитель можно преобразовать так же, как и для умножителя. После преобразования получаем:

(11)

Нелинейный сигмоидный преобразователь

Нелинейный сигмоидный преобразователь, как и любой другой нелинейный преобразователь, имеющий один входной сигнал


стр.

Похожие книги