Учебное пособие по курсу «Нейроинформатика» - страница 34

Шрифт
Интервал

стр.

=(a-b)/2. Более сложный, но часто более эффективный — подбор x исходя из требования минимальности критерия Липшица.

Приведенный выше способ уменьшения критерия Липшица не единственный. В следующем разделе рассмотрен ряд способов предобработки, решающих ту же задачу.

Другие способы предобработки числовых признаков

В данном разделе будет рассмотрено три вида предобработки числовых признаков — модулярный, позиционный и функциональный. Основная идея этих методов предобработки состоит в том, чтобы сделать значимыми малые отличия больших величин. Действительно, пусть для ответа существенно изменение величины признака на единицу при значении признака порядка миллиона. Очевидно, что простейшая предобработка (1) сделает отличие в единицу неразличимым для нейронной сети при абсолютных значениях порядка миллиона.

Все эти виды предобработки обладают одним общим свойством — за счет кодирования входного признака несколькими сигналами они уменьшают сложность задачи (критерий Липшица).

Модулярная предобработка

Зададимся некоторым набором положительных чисел y>1, …, y>k. Определим сравнение по модулю для действительных чисел следующим образом:

x mod y = x-y·Int(x/y), (15)

где Int(x) — функция, вычисляющая целую часть величины x путем отбрасывания дробной части. Очевидно, что величина x mod y лежит в интервале (-y, y).

Кодирование входного признака x при модулярной предобработке вектором Z производится по следующей формуле:

(16)


Таблица 8. Пример сигналов при модулярном вводе

xx mod 3x mod 5x mod 7x mod 11
52055
1010310
150013

Однако модулярная предобработка обладает одним отрицательным свойством — во всех случаях, когда y>iy>r>1, при целом r, разрушается отношение предшествования чисел. В табл. 8 приведен пример векторов. Поэтому, модульная предобработка пригодна при предобработке тех признаков, у которых важна не абсолютная величина, а взаимоотношение этой величины с величинами y>1, …, y>k.

Примером такого признака может служить угол между векторами, если в качестве величин y выбрать y>i=π/i.

Функциональная предобработка

Функциональная предобработка преследует единственную цель — снижение константы Липшица задачи. В разделе «Предобработка, облегчающая обучение», был приведен пример такой предобработки. Рассмотрим общий случай функциональной предобработки, отображающих входной признак x в k-мерный вектор z. Зададимся набором из k чисел, удовлетворяющих следующим условиям: x>min<y>1<…<y>k>-1<y>k<x>max.


Таблица 9. Пример функциональной предобработки числового признака x∈[0,5], при условии, что сигналы нейронов принадлежат интервалу [-1,1]. В сигмоидной предобработке использована φ(x)=x/(1+|x|), а в шапочной — φ(x)=2/(1+x²)-1. Были выбраны четыре точки y>i=i.

xz>1(x)z>2(x)z>3(x)z>4(x)
Линейная предобработка
1.50.5-0.5-1-1
3.5110.5-0.5
Сигмоидная предобработка
1.50.3333-0.3333-0.6-0.7142
3.50.71420.60.3333-0.3333
Шапочная предобработка
1.50.60.6-0.3846-0.7241
3.5-0.7241-0.38460.60.6

Пусть φ — функция, определенная на интервале [x>min-y>k, x>max-y>1], а φ>min,φ>max — минимальное и максимальное значения функции φ на этом интервале. Тогда i-я координата вектора z вычисляется по следующей формуле:

(17)

Линейная предобработка. В линейной предобработке используется кусочно линейная функция:

(18)

Графики функций z>i(x) представлены на рис. 2а. Видно, что с увеличением значения признака x ни одна функция не убывает, а их сумма возрастает. В табл. 9 представлены значения этих функций для двух точек — x>1=1.5 и x>2=3.5.

Сигмоидная предобработка. В сигмоидной предобработке может использоваться любая сигмоидная функция. Если в качестве сигмоидной функции использовать функцию S>2, приведенную в разделе «Нейрон» этой главы, то формула (17) примет следующий вид:




Графики функций z>i(x) представлены на рис. 2б. Видно, что с увеличением значения признака x ни одна функция не убывает, а их сумма возрастает. В табл. 9 представлены значения этих функций для двух точек x>1=1.5 и x>2=3.5.

Шапочная предобработка. Для шапочной предобработки используются любые функции, имеющие график в виде «шапочки». Например, функция φ(x)=1/(1+x²).

Графики функций


стр.

Похожие книги