Учебное пособие по курсу «Нейроинформатика» - страница 18

Шрифт
Интервал

стр.

Основным ограничением сети (6) является малое число эталонов — число линейно независимых эталонов должно быть меньше размерности системы n.

Тензорные сети

Для увеличения числа линейно независимых эталонов, не приводящих к прозрачности сети, используется прием перехода к тензорным или многочастичным сетям [75, 86, 93, 293].

В тензорных сетях используются тензорные степени векторов. k-ой тензорной степенью вектора x будем называть тензор x>⊗k, полученный как тензорное произведение k векторов x.

Поскольку в данной работе тензоры используются только как элементы векторного пространства, далее будем использовать термин вектор вместо тензор. Вектор x>⊗k является n>k-мерным вектором. Однако пространство L({x>⊗k}) имеет размерность, не превышающую величину , где — число сочетаний из p по q. Обозначим через {x>⊗k} множество k-х тензорных степеней всех возможных образов.

Теорема. При k в множестве {x>⊗k} линейно независимыми являются векторов. Доказательство теоремы приведено в последнем разделе данной главы.

Небольшая модернизация треугольника Паскаля, позволяет легко вычислять эту величину. На рис. 2 приведен «тензорный» треугольник Паскаля. При его построении использованы следующие правила:

1. Первая строка содержит двойку, поскольку при n= 2 в множестве X всего два неколлинеарных вектора.

2. При переходе к новой строке, первый элемент получается добавлением единицы к первому элементу предыдущей строки, второй — как сумма первого и второго элементов предыдущей строки, третий — как сумма второго и третьего элементов и т. д. Последний элемент получается удвоением последнего элемента предыдущей строки.

Рис. 2. “Тензорный” треугольник Паскаля


В табл. 1 приведено сравнение трех оценок информационной емкости тензорных сетей для некоторых значений n и k. Первая оценка — n>k — заведомо завышена, вторая — — дается формулой Эйлера для размерности пространства симметричных тензоров и третья — точное значение.


Таблица 1.

Как легко видеть из таблицы, уточнение при переходе к оценке r>n,k является весьма существенным. С другой стороны, предельная информационная емкость тензорной сети (число правильно воспроизводимых образов) может существенно превышать число нейронов, например, для 10 нейронов тензорная сеть валентности 8 имеет предельную информационную емкость 511.

Легко показать, что если множество векторов {x>i} не содержит противоположно направленных, то размерность пространства L({x>⊗k}) равна числу векторов в множестве {x>i}.

Сеть (2) для случая тензорных сетей имеет вид

(9)

а ортогональная тензорная сеть

(10)

где r>ij>-1 — элемент матрицы Γ>-1({x>⊗k}).

Рассмотрим, как изменяется степень коррелированности эталонов при переходе к тензорным сетям (9)

Таким образом, при использовании сетей (9) сильно снижается ограничение на степень коррелированности эталонов. Для эталонов, приведенных на рис. 1, данные о степени коррелированности эталонов для нескольких тензорных степеней приведены в табл. 2.


Таблица 2. Степени коррелированности эталонов, приведенных на рис. 1, для различных тензорных степеней.

Тензорная степеньСтепень коррелированностиУсловия
C>ABC>ACC>BCC>AB+C>ACC>AB+C>BCC>AC+C>BC
10.740.720.861.461.601.58
20.550.520.741.071.291.26
30.410.370.640.781.051.01
40.300.260.550.560.850.81
50.220.190.470.410.690.66
60.160.140.400.300.560.54
70.120.100.350.220.470.45
80.090.070.300.160.390.37

Анализ данных, приведенных в табл. 2, показывает, что при тензорных степенях 1, 2 и 3 степень коррелированности эталонов не удовлетворяет первому из достаточных условий (), а при степенях меньше 8 — второму ().

Таким образом, чем выше тензорная степень сети (9), тем слабее становится ограничение на степень коррелированности эталонов. Сеть (10) не чувствительна к степени коррелированности эталонов.

Сети для инвариантной обработки изображений

Для того, чтобы при обработке переводить визуальные образов, отличающиеся только положением в рамке изображения, в один эталон, применяется следующий прием [91]. Преобразуем исходное изображение в некоторый вектор величин, не изменяющихся при сдвиге (вектор инвариантов). Простейший набор инвариантов дают автокорреляторы — скалярные произведения образа на сдвинутый образ, рассматриваемые как функции вектора сдвига.


стр.

Похожие книги