Как выглядело бы высказывание G в нашем гипотетическом примере? Вспомним, что в этом примере свойство, характеризующее коды доказуемых высказываний, — это "быть простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел". Возьмем пропозициональную функцию "х не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел" и трансформируем ее в "d(x) не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел". Предположим, что последнему выражению соответствует число 909.
Тогда высказывание G формулируется как
"d(909) не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел".
Также предположим, что d(909) — это число 43. Следовательно, G примет вид
"43 не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел".
Как уже было указано раньше, G имеет два уровня прочтения. На элементарном уровне это выражение арифметического свойства числа 43. Только когда мы смотрим на него через призму кодификации Гёделя, оно превращается в самореферентное и может читаться как говорящее о самом себе, что оно недоказуемо. Во второй главе мы увидим, что это замечание о различных уровнях прочтения позволяет преодолеть видимый парадокс, который возникает из анализа второй теоремы Гёделя.
НЕДОКАЗУЕМАЯ ИСТИНА
В связи с первой теоремой о неполноте обычно возникает вопрос: если G — недоказуемая истина, как мы можем быть уверены в ее истинности?
Ответ заключается в том, что "доказуемый" — относительное понятие. Если задано множество аксиом Л, существует истинное высказывание G, которое недоказуемо на основе этих аксиом (с использованием методов доказательства, принятых в программе Гильберта). Но ничто не мешает G быть доказуемым на основе других аксиом или с помощью других методов.
Хотя это пока точно не известно, последняя теорема Ферма может быть примером истины, недоказуемой на основе аксиом Пеано. В этой теореме, впервые предложенной Пьером
Ферма в 1637 году, утверждается, что если n > 2, то х>n + у>n + z>n не имеет решений среди натуральных чисел. После многочисленных попыток теорема наконец была доказана Эндрю Уайлсом в 1996 году.
Однако доказательство Уайлса во многом выходит за пределы обычных методов или аксиом арифметики. Последняя теорема Ферма истинна (Уайлс доказал это), но доказуема ли она, например, на основе аксиом Пеано с помощью методов программы Гильберта? Сегодня ответ на этот вопрос неизвестен, но наиболее разумное предположение заключается в том, что последняя теорема Ферма недоказуема на основе аксиом Пеано посредством рассуждений, проверяемых алгоритмически.
Однако если G недоказуемо на основе множества A аксиом, вполне возможно добавить во множество А новую аксиому, так что G станет доказуемым на основе этой расширенной системы, которую обозначим А'. Конечно, для А также справедлива теорема Гёделя, и, следовательно, будет существовать арифметическое утверждение G', которое является недоказуемым на ее основе.
Мы можем добавить в А новую аксиому, которая позволит доказать G\ и так получим множество A", где G будет доказуемым. Но для А' существует новое недоказуемое высказывание G". Мы можем добавить новую аксиому в А", но тогда существует недоказуемое G""... И так до бесконечности...
A —> G недоказуемо.
А' = А + другая аксиома —> G доказуемо, но G' — нет.
А" = А' + другая аксиома —> G и G" доказуемы, но G" — нет.
А"' + другая аксиома —> G, G и G" доказуемы, но G'" — нет.
Добавляя аксиомы по одной, никогда не удастся достигнуть полноты (то есть возможности доказать все истины). Но можно ли добиться этого другими средствами? Обратимся к этому вопросу в следующей главе.