Том 28. Математика жизни. Численные модели в биологии и экологии - страница 46

Шрифт
Интервал

стр.

, автор гипотезы Геи. 1993 год.


В модели предполагается существование Солнца с характеристиками, схожими с нашим Солнцем, и, как следствие, присутствие солнечного света. В модели также учитывается альбедо, то есть доля солнечного света, отражаемого маргаритками (черными или белыми), а также земной поверхностью, на которой не растут маргаритки. Если выбрать в качестве базового значения альбедо земной поверхности, не заселенной маргаритками, то альбедо белых маргариток будет выше базового значения, а их температура — ниже, чем температура земной поверхности. Черные маргаритки, напротив, будут отражать меньше света, чем незаселенная поверхность, в результате их температура будет выше. В модели Уотсона и Лавлока энергетический баланс планеты рассчитывается с учетом того, что на части суши произрастают белые маргаритки, на части — черные, а часть суши остается незаселенной. Кроме того, в модели рассматривается показатель снижения численности маргариток, а также математическая функция температуры. Модель содержит два дифференциальных уравнения, позволяющих смоделировать рост числа черных и белых маргариток на воображаемой планете:


Эти уравнения описывают скорость, с которой численность маргариток возрастает или убывает. Согласно первому уравнению, скорость, с которой меняется число белых маргариток х, зависит от их численности в момент времени t, коэффициента роста β(Т>x), а также от доли земной поверхности, где не растут маргаритки (S), и показателя снижения численности γ. Обратите внимание, что рост числа белых маргариток β(Т>x), в свою очередь, зависит от температуры Т участка земной поверхности, заселенной маргаритками.

Второе уравнение описывает динамику численности черных маргариток. В этом случае у — число черных маргариток в момент времени t, β(Т>y) — коэффициент роста, который зависит от локальной температуры Т на участке суши, где произрастают черные маргаритки, S — часть суши, где не растут маргаритки, у — показатель снижения численности. Будем считать, что значение у для обоих видов маргариток одинаково.

Также будем считать, что поведение коэффициента роста для белых и черных маргариток одинаково и описывается параболой. В соответствии с динамикой этого коэффициента предполагается, что температура, оптимальная для роста обоих видов маргариток, равна 22,5 °C. Таким образом, при оптимальной температуре коэффициенты роста белых и черных маргариток, β(Т>x) и β(Т>y), максимальны и равны единице. Так как коэффициенты роста описываются параболой, их значение будет уменьшаться до нуля по мере того, как температура будет приближаться к 5 °C или 40 °C (пороговые значения в модели выбраны произвольно). Следовательно, коэффициенты роста для двух видов маргариток варьируются от 0 до 1 и описаны похожими выражениями, которые приведены ниже:

β(Т>x) = 1–0,003265(22,5 — T>x)>2,

β(Т>y) = 1–0,003265(22,5 — T>y)>2.

Важно заметить, что в этих выражениях учитывается локальная температура. При температуре от 5 °C до 40 °C число маргариток будет возрастать. Так как белые маргаритки отражают больше солнечного света, область, в которой они произрастают, начнет охлаждаться. Черные маргаритки, напротив, поглощают солнечный свет, и область, в которой они произрастают, будет нагреваться. В результате температуру в областях, где произрастают белые маргаритки Т и черные маргаритки Т, можно выразить так:

T>x = Q(A — A>x) + T>m,

T>y = Q(A — A>y) + T>m

где Q — коэффициент поглощения тепла (его значение в модели равно 20), Т>m — средняя температура на планете, А — альбедо планеты, А>х  — альбедо, вызванное белыми маргаритками, А — альбедо, вызванное черными маргаритками.

Средняя температура на планете Т>m рассчитывается согласно закону Стефана — Больцмана. Этот закон гласит, что энергия, излучаемая телом, пропорциональна температуре этого объекта, возведенной в четвертую степень. Применив этот закон, получим следующее выражение:


где σ = 5669·10-8 Вт/м>2·К>4 — постоянная Стефана — Больцмана, Е — солнечная энергия, получаемая планетой. Обратите внимание, что если бы мы захотели смоделировать безжизненную планету, то есть планету, не населенную маргаритками, то значение альбедо было бы равным


стр.

Похожие книги