Техника и вооружение 2007 08 - страница 2

Шрифт
Интервал

стр.

Используемые для зенитной стрельбы оптические приборы (бинокли, дальномеры) обладали достаточно высокой точностью определения угловых координат, но имели существенные недостатки: это были принципиально невсепогодные средства — их невозможно было использовать ночью и при неблагоприятных метеоусловиях (туман, дождь, снегопад, облачность). Поле зрения этих оптических приборов было весьма ограниченным, что затрудняло ведение непрерывного наблюдения за воздушным пространством. Кроме того, оптические дальномеры обладали низкой точностью определения расстояния до самолетов.

Со времени Первой мировой войны и до начала 1930-х гг. в основном совершенствовались огневые средства ПВО. Приборное обеспечение зенитной артиллерии, предназначенное для надежного обнаружения и сопровождения воздушных целей в различных условиях с использованием разных физических принципов, начало динамично развиваться лишь в 1930-е гг. Новым шагом стала идея сочетания обнаружения воздушного противника (по направлению) в любое время суток и в любую погоду по шуму от двигателей самолета с помощью звукоулавливателей и освещения обнаруженных таким образом целей прожекторами, которые и наводились на цели звукоулавливателями. Освещенный самолет мог быть затем обстрелян зенитной артиллерией или атакован истребителями. В таком варианте комплексного применения оптических, акустических, светотехнических и огневых средств, в принципе, решалась задача поражения самолета днем и ночью в любых погодных условиях.

В 1932 г. на вооружение РККА была принята система «Прожзвук» (прожектор-звукоулавливатель). Одновременно в войска поступил звукоулавливатель ЗТ-2. Система «Прожзвук» явилась первым отечественным всепогодным и всесуточным (работающим в любое время суток) средством обнаружения самолетов — именно поэтому подобные системы вызвали тогда интерес и активно разрабатывались во многих странах. Однако у этого варианта оказались два серьезных недостатка, в целом свойственных акустическим методам обнаружения: малая скорость распространения звука в воздухе (всего 330 м/с) и подверженность воздействию ветра. Эти особенности не позволяли с помощью звукоулавливателя точно определить направление на самолет и обнаружить его на большой дальности.

В начале 1930-х гг. назрела необходимость проведения широкого круга научно-исследовательских работ с целью преодоления явно наметившегося разрыва между возросшими возможностями как авиации, так и огневых средств ПВО и ограниченными характеристиками оптических и акустических средств обнаружения и сопровождения целей.

В нашей стране в 1930-е гг. проводились исследования по обнаружению летящих самолетов по тепловому излучению их двигателей (подобные работы велись в то время также в США и в Великобритании). Были созданы экспериментальные образцы теплообнаружителей, которые испытывались в разных погодных условиях по различным типам самолетов. Однако уровень развития инфракрасной техники в то время, в частности, низкая чувствительность ИК-приборов, не удовлетворяли многим требованиям, особенно по дальности и всепогодности действия. Тем не менее результаты этих работ нашли применение в надводном флоте и береговой обороне (сторожевые корабли и эсминцы обнаруживались теплообнаружителями на дальностях 12–22 км в сумерках и ночью, а также при моросящем дожде). Средства ИК-обнаружения («спецпрожекторы», как их называли) использовались на кораблях и в береговой обороне советского ВМФ в 1941–1945 гг. Занимались и инфразвуковыми системами, и даже засечкой самолетов по импульсу магнето двигателей (последний, самый тупиковый путь, очень заинтересовал тогда Начальника вооружений РККА М.Н. Тухачевского). Для эффективного решения задачи требовались средства, основанные на других физических принципах, а именно — радиотехнические.

Впервые возможность использования свойства радиоволн отражаться от металлической преграды была установлена А.С. Поповым в 1897 г. Во время испытаний средств связи, размещенных на кораблях «Европа» и «Африка», радиосвязь между ними неожиданно прекратилась, хотя приборы были в исправности. В это время между кораблями проходил крейсер «Лейтенант Ильин». Когда крейсер миновал корабли, радиосвязь возобновилась. А.С. Попов нашел этому объяснение: причина заключалась в отражении радиоволн металлическим корпусом крейсера. «Африка» оказалась в «радиотени». Описав это свойство радиоволн, А.С. Попов высказал мысль, что это явление впоследствии можно будет использовать в практических целях. В отчете о применении радиосвязи на море А.С. Попов писал: «…Применение источника электромагнитных волн на маяках, в добавление к световому и звуковому сигналу, может сделать маяки видимыми в тумане и в бурную погоду… Направление маяка может быть приблизительно определено при помощи свойства мачт, снастей и т. д. задерживать электромагнитную волну, так сказать, затенять ее». Это открытие А.С. Попова привело в конце концов к рождению новой отрасли радиотехники — радиолокации. Однако практические работы в этом направлении не могли начаться раньше, чем был достигнут определенный технологический прогресс, появились достаточно мощные и стабильные по излучаемой частоте передатчики и чувствительные приемники, начата разработка теории передачи и приема радиосигналов, антенн.


стр.

Похожие книги