События и люди - страница 161

Шрифт
Интервал

стр.

Фундаментальный вклад внес Сергей Петрович в теорию структуры ударных волн в термодинамически неравновесных релаксирующих средах. Известно [1], что вторая вязкость обусловлена нарушением термодинамического равновесия при изменении объема сплошной среды и обычно имеет такой же порядок величины, что и обычная вязкость η. Однако если время релаксации не мало по сравнению с характерным временем изменения объема, то отклонения от термодинамического равновесия велики и диссипация энергии может быть большой. Поскольку диссипация определяется второй вязкостью ζ, значение ζ может оказаться большим. Величина ζ зависит от соотношения между скоростью изменения объема и временем релаксации. В частности, если изменения объема вызваны звуковой волной, то ζ зависит от ее частоты и можно говорить о дисперсии второй вязкости. М. И. Мандельштам и М. А. Леонтович, исследовавшие этот вопрос еще в 1937 г., показали, что [5]

где ρ — плотность среды, ω — частота, i — мнимая единица, a>∞, a>0 — скорости звука при частотах столь больших и малых, что релаксационный процесс соответственно «заморожен» и, наоборот, полностью завершился. Из (1) следует, что при процессах настолько медленных, что ωτ << 1,

откуда следует, что ζ действительно растет с увеличением времени релаксации τ.

С. П. Дьяков в 1954 г. показал [6], что формула (2) и условие ее выполнения могут быть эффективно использованы для определения структуры и ширины слабых ударных волн в сильно релаксирующих средах. Действительно, в соответствии с гидродинамической теорией ударных волн [1] давление в переходном слое слабой ударной волны (т. е. ее структура) определяется в соответствии с законом

где x — пространственная координата, P>1, P>2 — давление соответственно впереди и за фронтом волны, а δ — ее ширина, определяемая формулой

где V, S — удельные объем и энтропия, ∆P = P>1 — P>2 — перепад давления в ударной волне, а

В формуле (5) a, C>V , C>P — скорость звука и удельные теплоемкости при постоянных давлении и объеме, а все входящие а правую часть (4) величины (кроме ∆P) относятся к состоянию перед волной. С. П. Дьяковым было замечено, что поскольку в силу (4) ширина переходного слоя ударной волны обратно пропорциональна ее амплитуде, то для достаточно слабых ударных волн в редактирующей среде состояние вещества в переходном слое можно считать изменяющимся медленно по отношению к установлению равновесия, что позволяет трактовать процесс релаксации в духе метода Мандельштама-Леонтовича с использованием выражения (2) в (5), пренебрегая при этом теплопроводностью и обычной вязкостью. В результате была получена формула

возможность пользования которой требовала установления еще условия медленного изменения состояния вещества в переходном слое. Сформулированное в общем виде δ >> a>0τ, в силу (2) и (6) это условие было конкретизировано в форме общеизвестного ныне критерия

Описанный выше метод нашел приложение для некоторых важных классов релаксирующих систем [7–9] и в настоящее время широко известен как «метод концепции второй вязкости Мандельштама-Леонтовича-Дьякова».

Как уже отмечалось выше, проблема устойчивости фронта ударной волны вновь стала в центре внимания исследователей с начала 1970 г., когда это явление получило подтверждение экспериментом, а работа Сергея Петровича [2] — дальнейшее развитие. Ряд обобщений и идей в этой области принадлежит О. А. Синкевичу, которому мы и предоставим слово.

— В настоящее время становится очевидным, что именно механизм устойчивости обеспечивает отбор различных эволюционирующих состояний в живой и неживой природе. Если останавливаться только на неустойчивостях в распределенных системах, то во многих случаях можно выделить неустойчивости, вызванные внутренними состояниями и процессами в среде, и неустойчивости, обусловленные активными границами.

С. П. Дьяков был одним из первых, кто убедительно продемонстрировал роль активных границ в задаче об устойчивости плоских ударных волн с произвольным видом ударной адиабаты Гюгонио P = P(V)>H (здесь P — давление, V = 1/ρ — удельный объем, а ρ


стр.

Похожие книги