Сингулярность. Образы «постчеловечества» - страница 3

Шрифт
Интервал

стр.

Эта аналогия призвана донести до нас простые мысли: во-первых, суть постсингулярного человечества никак не связана ни с неким сверхчеловеком, улучшенной модификацией Хомо Сапиенс, снабженной сверхразумом, ни с искусственным сверхинтеллектом. А во-вторых, мы принципиально не обладаем терминологией, понятиями, с помощью которых можно выразить природу постсингулярного мира. Ну как, к примеру, в биологических понятиях описать человеческие науку, искусство, экономику? Кошка, конечно, может запомнить, что еда появляется из холодильника, но по ее биологическому разумению банка консервов – результат «магии», а для нас – продукт обычного производства. Посему мы можем лишь анализировать наши социумные процессы, которые при их логическом продлении в будущее приводят к некому неопределенному состоянию, исключают сами себя в так называемой точке сингулярности.

Один из детальных вариантов проработки темы «сингулярности» предложил российский ученый А. Д. Панов[2] на основе численного анализа сокращения периодов исторического развития, то есть периодов между эволюционными кризисами, или, можно сказать, революциями в истории Земли (анализ был проведен на основе гипотез и данных, ранее полученных историком И. М. Дьяконовым[3] и физиком С. П. Капицей[4]). К таким революциям можно отнести кислородную катастрофу и связанное с ней появление ядерных клеток (эукариот); кембрийский взрыв – быстрое, практически мгновенное по палеонтологическим меркам формирование разнообразных видов многоклеточных, включая позвоночных; моменты появления и вымирания динозавров; зарождение гоминид; неолитическую, городскую революции; начало средневековья; промышленную и информационную революции; крах двухполярной империалистической системы (распад СССР). Панов показал, что перечисленные (и некоторые другие) моменты значительных эволюционных перемен, будучи проставлены на временной оси, однозначно вписываются в график вполне конкретного уравнения, которое имеет сингулярное решение в районе 2027 года. И в данном случае перед нами действительно «сингулярность» в традиционном математическом смысле – число кризисов в этой точке, согласно формуле, становится бесконечным, а промежутки между ними стремятся к нулю, то есть решение уравнения становится неопределенным.

Понятно, что формулу (график) Панова нельзя рассматривать как закон эволюции биосферы и социума. Однако вписанность вполне объективно выделенных кризисно-революционных моментов в математически строгую закономерность демонстрирует, что развитие жизни и цивилизации далеко не случайно. Следовательно, продлевая в будущее закономерность, однозначно проявляющуюся уже на протяжении 4 миллиардов лет, мы можем с большой долей уверенности предсказать судьбу цивилизации – образно говоря, указать точку падения снаряда. Хотя, конечно, отмеченная закономерность не позволяет нам описать грядущий взрыв содержательно, она лишь указывает на его значимость, на глобальность грядущих перемен.

Установив местоположение этой точки преткновения человеческой цивилизации, Панов, как и Виндж, сконцентрировал свое внимание на проблеме преодоления сингулярности, воспринимая ее как последнюю глобальную катастрофу. Но поскольку любая сингулярность есть только и исключительно неопределенное решение некоего математического уравнения, напрашивается вполне логичное заключение: наличие сингулярного решения означает – не больше и не меньше, – что данное уравнение, данная прямая (или кривая) больше не применима для описания какого-либо реального процесса. То есть наличие сингулярного решения свидетельствует только о том, что анализируемая закономерность, имеющееся решение, прежняя логика в сингулярной точке и за ней уже принципиально неприменимы для описания реальных процессов. Ведь даже при однозначных решениях уравнения говорить, что оно описывает какой-то реальный процесс, можно лишь с большой степенью условности – тогда о чем можно говорить, если решение уравнения становится неопределенным (сингулярным)? Только о том, что данное уравнение уж точно не имеет никакого отношения не только к процессу, но и к реальности вообще. То есть сингулярность – это всегда из области математики, а не реальности.


стр.

Похожие книги