Синергетика. Основы методологии - страница 10

Шрифт
Интервал

стр.

Глава 3. Фазовое пространство динамической системы

1. Выбор основных координат, характеризующих систему, поведение которой близко к детерминированному, и качественный анализ фазового пространства, описывающего такую систему. Аттракторы системы и возможные бифуркации её фазового пространства

Однако анализа динамики одного, хотя и удачно выбранного, параметра целого чаще всего бывает недостаточно для полного исследования поведения сложной системы, особенно в тех случаях, когда выбранный параметр принимает устойчивое стационарное значение. Система существует и активно функционирует при постоянном значении параметра целого. В этом, случае можно ввести некоторые обобщённые координаты, изменение которых более подробно характеризуют динамику системы. При этом исследуемый объект может быть описан как динамическая система в некотором фазовом пространстве обобщённых координат.

Величина X>i,i=1,…, n, описывает изменение i-й координаты. X, может включать несколько переменных, характеризующих действие этой координаты, а возможно, и целого континуума. Эти координаты собраны в вектор состояния Х(Х>1, Х>2, …).

Состояние изучаемого объекта в данный момент времени может быть задано точкой в некотором множестве X, в частности в n-мерном многообразии, В этом случае изучаемому объекту соответствует некоторая n-мерная динамическая система, а множество всех точек, соответствующих различным состояниям, называется n-мерным фазовым пространством. Совокупность состояний данной системы в различные моменты времени формирует одномерное пространство (линию), называемую фазовой траекторией системы. Если фазовое пространство системы — n-мерное гладкое многообразие, то фазовая траектория системы гладкая кривая (за исключением некоторых особых точек) и для её описания (а также для описания пучка траекторий, начинающихся из различных точек фазового пространства) может быть использован аппарат системы дифференциальных уравнений dX/dt = f(X,t). Здесь dX/dt — производная вектора X по времени.

Пусть мы имеем какое-либо решение системы дифференциальных уравнений в виде Х(t) = Ф(Х>0, t), где Х(t) — значения координат фазовой траектории, проходящей через точку Х>0 в момент времени t>0. В принципе, эта система уравнений может быть разрешена относительно t: t = Ф>-1 (Х, Х>0).

Предположим, что мы знаем состояние динамической системы в момент T>n, соответствующее точке Х>n, и хотим определить состояние той же системы X>n+1 в момент Tn+1. Тогда, воспользовавшись предыдущими формулами, получим X>n+1= Ф(Х>0, Т>n+1) = Ф(Х>0,T>n + (ΔT)>n) = Ф{X>0, [Ф>-1(X>0, Х>n) + (ΔT>n]}.

Введем понятие оператора F, определяющего изменение системы Х во времени: Х>n+1 = F(X>n). Оператор F порождает итерационный процесс и указывает преобразование состояния динамической системы Х>n в момент времени T>n в её состояние Х>n+1 в момент времени T>n+1.

В принципе, оператор F может быть введён в более общем случае, когда непрерывная зависимость от времени либо отсутствует вовсе, либо не может быть определена.

Основной идеей Г. Хакена, являющейся одной из основополагающих в Синергетике, является идея выделения среди обобщенных координат сложной системы нескольких наименее устойчивых мод, названных им главными модами или параметрами порядка, неустойчивость которых приводит к качественному изменению состояния всей системы, и таких координат, которые сами мало изменяются, однако которых изменяет характер устойчивости состояния основных мод. Они были названы управляющими параметрами.

Теория нелинейных динамических систем в настоящее время интенсивно развивается. Предложены различные формы классификации систем и их математических моделей. Введена терминология, которая активно внедряется в практику теоретических и экспериментальных исследований. Понятия фазового пространства, стационарной точки, цикла, тора, аттрактора, бифуркации, сепаратрисы уже давно вошли в обиход тех, кто использует результаты качественного анализа и расчётов параметров модельных динамических систем для исследования реальных явлений.

2. Выделение странных аттракторов. Количественный и качественный анализ поведения системы, находящейся в области странного аттрактора. Изучение эргодических свойств исследуемой системы

стр.

Похожие книги