Самые знаменитые головоломки мира - страница 84
196. Четыре кольца весят соответственно >1/>4, >3/>4, 2>1/>4 и 6 >3/>4 фунта. Умело пользуясь этими кольцами и помещая их, если потребуется, на оба рычага весов, можно измерить любой вес от >1/>4 фунта до 10 фунтов с точностью до >1/>4 фунта.
197. Одни часы опережали другие на 3 мин в час; так что по прошествии 20 ч расхождение в их показаниях составило 1 ч.
198. В коробке можно разместить дюжину яиц, как показано на рисунке.
199. Задачу легко решить, двигаясь в обратную сторону. Я начал с 260 долларов, у барона было 80, а у графа – 140 долларов.
200. Мальчику было 5 лет.
201. Всего было 15 пчел.
202. Сумма обычных вкладов составляла 6 000 000 долларов.
203. Всего молодые люди отдали в прачечную 12 манжет и 18 воротничков. Стирка воротничка обходилась в 2 цента, а стирка манжеты в 2 >1/>2цента, так что Чарли заплатил 39 центов.
204.В этой интересной задаче, где уборка зерна производится вдоль полосы, идущей по краю поля, до тех пор, пока не будет убрана половина урожая, я нашел, что фермеры прибегли к одному простому правилу: «Четверть разницы между путем напрямик через поле и окружным путем по дороге». Выражаясь языком математики, это значит: из суммы двух сторон вычтите диагональ поля и поделите разность на 4.
Поле имело в длину 2000, а в ширину – 1000 ярдов. С помощью рулетки эти честные фермеры нашли, что диагональ, проведенная из одного угла поля в противоположный, чуть превосходит 2236 ярдов. «Кружной путь по дороге» составил, разумеется, 3000 ярдов, так что разность оказалась чуть меньше 764 ярдов. Четверть этой величины отличалась на самую малость от 191 ярда (190,983), что и следовало принять за ширину полосы.
205. Дедушкины часы остановились точно в 9 ч 49 мин 5 1/11 с.
206. С помощью 6 стрел можно выбить 100 очков, послав их соответственно в 17, 17, 17, 17, 16, 16.
207.На помещенном ниже рисунке слева показано, как можно разрезать квадрат на 5 частей, из которых удается сложить 2 греческих креста одинаковых размеров. Одна из частей имеет форму креста, а из остальных четырех частей складывается второй крест. После того как эта головоломка стала хорошо известной, я нашел способ добиться того же результата, разрезав квадрат только на 4 части, как показано в центре рисунка. Из этих частей можно сложить 2 креста, изображенные справа.
Для того чтобы разрезать квадрат на 5 частей, из которых можно сложить 2 греческих креста различных размеров, разрежьте его, как показано на помещенном ниже рисунке слева. Часть А представляет собой меньший крест, а из четырех других частей можно сложить большой крест, как показано на рисунке справа.
На помещенном ниже рисунке показано, каким образом греческий крест можно разрезать на 5 частей, из которых удается сложить 2 креста одинаковых размеров. Одна часть совпадает с искомым крестом. Из оставшихся частей можно сложить второй крест.[36]
208. Существует простой способ решения этой задачи, где не приходится возиться с квадратными корнями. Сначала разделим 600 на 250 и прибавим 2, что дает 4,4. Разделив 600 на 4,4, мы получим расстояние от правого бегуна до моста слева, равное 136 4/11 ярда. Если мы сложим это значение с 250 (расстоянием от того же самого бегуна до моста справа), то получим 386 4/11 ярда, что и будет ответом к задаче.
[В этом способе, применимом к любому прямоугольному треугольнику, озадачивает прибавление двойки.
Предположим, что а – расстояние от правого бегуна до левого моста, b – расстояние от него же до правого моста, с – катет треугольника длиной в 600 ярдов и d – гипотенуза. По теореме Пифагора (а + b)>2+ с>2 = d>2. Мы знаем также, что а + d = b + с, то есть d =b + с – д. Подставляя это в предыдущее равенство, мы найдем, что все квадраты сократятся и получится формула a = bc/(2b + c) = c/(c/b + 2) – M.Г.]
209. У каждой Музы вначале было 48 яблок, а у каждой Грации 144 цветка, по 36 штук каждого цвета. Каждая Муза дала каждой Грации по 4 яблока, а каждая Грация дала каждой Музе дюжину цветков (по 3 каждого цвета). После такого обмена у каждой девушки оказалось по 36 яблок и по 36 цветков (по 9 штук каждого цвета).