Пятьсот двадцать головоломок - страница 105

Шрифт
Интервал

стр.

в C длиннее пунктирной, следовательно, мы выбираем первую. Точно так же мы увеличим длину линии, если нарисуем язык вместо рта, но при этом кончик языка, изображенный в виде отрезка прямой, мы обязаны отбросить.

421. Существуют разные варианты решения; один из них показан на рисунке. Однако совершенно необходимо, чтобы вы начинали в A, а кончали в B или наоборот. В любой другой точке сходятся две или четыре (четное число) линии, а в A и B — три (нечетное число). Следовательно, начало и конец пути должны совпадать с A и B.

422. Головоломку решить можно, но при этом необходимо начинать рисунок в точке A, а кончать его в B или наоборот. В противном случае начертить требуемую фигуру одной непрерывной линией нельзя.

423. Из рисунка видно, что путь узника полностью удовлетворяет заданным условиям, пока узник не попадает в b. Дойдя до этой точки, узнику следовало бы поставить одну ногу в точку c, находящуюся в соседней камере, и сказать: «Поскольку одна нога находится в c, то я, несомненно, вошел в эту камеру и все же, убрав ногу назад, я не вошел тем самым в b во второй раз по той простой причине, что ее и не покидал с тех пор, как вошел туда в первый раз!»

424. На рисунке показан изящный способ посадки деревьев в 9 рядов по 4 дерева в каждом.

425. Расположите 16 монет в виде квадрата 4 × 4. Затем положите по одной монете сверху на первую монету первой строки, на третью монету второй, на четвертую — третьей и на вторую — четвертой строки.

426. На рисунке показано, как следует пересадить 6 деревьев, чтобы получилось 20 рядов по 4 дерева в каждом.

427. На рисунке показано, как следует расположить колышки. Три колышка из дырок, отмеченных крестиками, надо поместить в левый верхний угол. После этого 10 колышков образуют 5 рядов по 4 колышка в каждом. Если вы отразите диаграмму в зеркале, то получите единственное решение, отличное от данного.

428. Решение показано на рисунке. Десять фишек образуют 5 прямых по 4 фишки на каждой.

429. На рисунке видно, что корабли образуют 5 прямых по 4 корабля на каждой, а белые призрачные корабли указывают позиции, с которых 4 из них были перемещены.

430. На рисунке представлено симметричное решение, при котором 21 звезда образует 11 прямых по 5 звезд на каждой прямой.

431. Очевидно, что для двух и большего числа прилегающих стран необходимы по крайней мере две краски (случай 1). Если три страны попарно прилегают друг к другу, то необходимы три краски (случай 2). Для четырех стран требуются три краски, если четвертая (Ж) страна прилегает к двум другим, уже прилегающим друг к другу (случай 3). (Поскольку возможен вариант, когда, как в случае 4, краска 3 прилегает к двум не прилегающим друг к другу странам, и в силу этого можно обойтись двумя красками.) Четыре же краски понадобятся и в случае, когда четвертая страна прилегает к каждой из трех прилегающих друг к другу стран (случай 5).

Для пяти прилегающих стран потребуются 3 краски, если одна страна прилегает к двум прилегающим друг к другу странам (случай 6). Четыре краски потребуются, если пятая страна прилегает к каждой из трех прилегающих друг к другу стран (случай 7). Однако 5 красок потребовались бы в случае, если бы пятая страна прилегала к четырем прилегающим друг к другу странам. Если такая карта возможна, то теорема не верна.

Рассмотрим сначала четыре страны, прилегающие друг к другу. Мы произведем небольшое преобразование, приняв, что любые две прилегающие друг к другу страны связаны между собой мостом. Мост может иметь любую длину, а страны можно свести просто к точкам, не влияя на условия[41]. В случаях 8 и 9 я изобразил четыре страны (точки), соединенные между собой мостами (линиями). Относительное расположение этих точек совершенно несущественно, и выясняется, что в каждом возможном случае к одной из стран (точек) нельзя подобраться снаружи.

Это легко доказать. Если 3 точки связаны между собой прямыми, то эти точки должны либо образовывать треугольник, либо лежать на одной прямой. Предположим сначала, что они образуют треугольник ЖКЗ, как в случае 16. Тогда четвертая страна (


стр.

Похожие книги