Психология развития: методы исследования - страница 99

Шрифт
Интервал

стр.

вый уровень агрессии. Однако сырые данные из табл. 7.1 свидетельствуют о том, что эти средние значения имеют разные основания.

Приведенные выше примеры демонстрируют необходимость иных дескриптивных статистических показателей помимо среднего арифметического. Есть еще две меры центральной тенденции. Одна из них — медиана. Медиана — это центр распределения, выше которого находится одна половина показателей, а ниже — другая. Сравним вновь результаты 3- и 4-летних детей. Из табл. 7.2 явствует, что данные результаты имеют общую медиану — 4. Это свидетельствует о фундаментальном сходстве двух распределений, сходстве, которое мешает заметить разница средних. В целом, медиана приобретает особце значение тогда, когда распределение асимметрично, то есть включает несколько необычно высоких или низких показателей. В таких случаях среднее может дать искаженную картину типичных ответов.


Таблица 7.2 Дескриптивные статистические показатели для данных из таблицы 7.1

СреднееМедианаМодаСтандартное отклонение
3-летние5,6455,38
мальчики
3-летние девочки5,0305,88
4-летние13,44313,90
мальчики
4-летние девочки3,4333,29
Мальчики в9,54311,09
целом
Деоочки в4,23. 04,75
целом
3-летние в5,33,505,55
целом
4-летние в целом8,43311,15

Третья мера центральной тенденции — мода. Мода — показатель, наиболее часто встречающийся в определенной группе. Эта мера используется редко, однако в некоторых обстоятельствах ее значение довольно информативно. Рассмотрим, к примеру, данные 3-летних девочек из табл. 7.1. Ранее мы отметили, что средний уровень агрессивных действий в этой группе — 5,0 — практически такой же, как и у мальчиков. Однако, в отличие от мальчиков, для 3-летних девочек модальным было нулевое значение. Этот факт вполне заслуживает того, чтобы упомянуть о нем в отчете.

Наряду с центральной тенденцией, дескриптивные статистические показатели характеризуют изменчивость распределения. Нам необходимо знать не только, какова центральная тенденция, но и то, насколько приближаются показатели к центральному значению или отклоняются от него. Чаще всего мерой изменчивости служит дисперсия. При ее расчете сначала находят среднее для выборки. Затем определяется разница между этим средним арифметическим и показателем каждого из испытуемых. Эти значения разности, или «отклонения», возводятся в квадрат, суммируются, а полученная сумма делится на N - 1, результатом чего и является показатель дисперсии. Таким образом, дисперсия — это приблизительно среднее квадратичных отклонений; «приблизительно», поскольку делитель равен N - 1, а не N. Чем больше разница между индивидуальными показателями, тем больше дисперсия.

В научных статьях в качестве меры изменчивости обычно указывается не дисперсия, а стандартное отклонение. Стандартное отклонение — это просто квадратный корень из показателя дисперсии. В табл. 7.2 он подсчитан для каждой из групп нашего гипотетического исследования. Полученныезначеиия стандартного отклонения подтверждают наши интуитивные предположения о степени разброса индивидуальных показателей в группах. Обратите особое внимание на весьма значительное стандартное отклонение у 4-летних мальчиков, в группе, где было отмечено несколько крайне высоких показателей.

Статистические показатели, выводимые логическим путем

Предположим, мы получили значения среднего арифметического, представленные в табл. 7.2. Оказывается, что уровень агрессии изменяется как функция от возраста и пола. Но как выяснить наверняка, является ли обнаруженное различие истинным или это просто случайные колебания? На этот вопрос призваны ответить статистические показатели, выводимые логическим путем.

Для объяснения смысла статистических показателей, выводимых логическим путем, нужно вспомнить некоторые разграничения (имеющие частичное совпадение), введенные в предыдущих главах. Одно из них — разграничение между истинными показателями и погрешностями измерения. Любой показатель состоит из двух компонентов; действительного результата испытуемого, полученного при измерении, и любого рода погрешности измерения, возникающей при попытке выявить этот истинный показатель. Второе разграничение — между первичной дисперсией и вторичной дисперсией, или дисперсией ошибки. Первичная дисперсия связана с изучаемыми независимыми переменными; вторичная дисперсия, или дисперсия ошибки, обусловлена действием всех других факторов, то есть может иметь какой угодно источник, за исключением независимых переменных. Последнее разграничение — между популяцией и выборкой. Популяция — это весь тот контингент людей, который интересует исследователя; а выборка — это группа людей, фактически включенных в исследование.


стр.

Похожие книги