При сравнении двух выборок (двух возрастов, двух полов, экспериментальных условий и т. д.) нас интересует вопрос, есть ли истинное различие между популяциями, из которых отобраны эти группы. Если бы нам удалось собрать данные по всей популяции, а не только по выборке, и исключить возможность погрешности измерения, у нас был бы ответ: полученные результаты и были бы результатами интересующей нас популяции. Однако, разумеется, сделать этого мы не можем; выборки — это всегда лишь часть популяции, измерение всегда неточно, и всегда существуют посторонние источники дисперсии. Именно поэтому нам необходимы методы оценки, или определения на основе логических заключений вероятности того, что выявленные различия между выборками отражают истинные различия между популяциями.
Поясним сказанное выше на примере гипотетического исследования агрессии и вопроса различий между полами в уровне агрессии. Мы уже знаем, что различия между полами действительно есть, в том смысле, что показатели мальчиков и девочек неодинаковы. Однако мы знаем и то, что это различие может объясняться погрешностями измерения и побочными источниками дисперсии. Кроме того, мы наблюдали лишь небольшую выборку из популяции, которая нас интересует — только 60 детей из миллионов 3- и 4-леток, посещающих детские сады США, и только несколько часов из жизни этих детей. Возможно, понаблюдав за теми же детьми вновь, мы получили бы несколько отличные результаты. Возможно, что, понаблюдав вторую выборку из 60 детей, мы опять-таки получили бы иные результаты. И возможно, что если бы нам удалось понаблюдать всю интересующую нас популяцию, мы получили бы еще какую-то совокупность данных. Именно для определения вероятности всех этих «возможно» необходимы статистические показатели, выводимые логическим путем.
В предыдущем абзаце цели использования статистических показателей, выводимых логическим путем, рассматриваются с двух позиций. Во-первых, с точки зрения воспроизводимости результатов или надежности. Получим ли мы одинаковые результаты, вновь и вновь производя один и тот же эксперимент? Во-вторых (что в действительности то же самое), с точки зрения перехода от выборки к популяции. Достаточно ли велико отличие, обнаруженное в выборке, чтобы доказать существование отличия в популяции? Как бы мы ни формулировали вопрос, нужно выбрать одно из двух: либо наши результаты действительно отражают положение вещей в популяции, либо они обусловлены действием случайных факторов, действующих в нашем конкретном исследовании. И как бы мы ни формулировали вопрос, использование статистических показателей, выводимых логическим путем, не дает однозначного ответа о том, что из сказанного верно; все, о чем мы можем судить по этим статистическим показателям — это о вероятности каждой из альтернатив. Это, фактически, главное, что нужно осознать в отношении статистических выводов: они вероятностны, а не абсолютны.
Теперь обратимся к конкретному примеру статистического анализа. Рассмотрим вновь различия между полами в уровне агрессии. Нам нужно определить, отражает ли обнаруженное в исследовании различие истинное различие в популяции или же оно — результат случайности. Как уже отмечалось, в качестве примера, за основу мы возьмем логику статистического анализа при использовании f-критерия.
Формула расчета f-критерия представлена ниже. Логика, положенная в основу этой аналитической проверки, довольно проста. Величина f-критерия, а следовательно, и вероятность того, что результаты неслучайны, зависит от трех факторов. Первый — разница между значениями средних. Чем больше различие, тем больше t. Второй — изменчивость внутри сравниваемых групп. Именно изменчивость представлена в довольно громоздком делителе. Чем она меньше, тем больше С. Наконец, третий фактор — объем выборки. Объем выборки влияет на конечный результат по двум направлениям. Во-первых, как можно заметить, проанализировав формулу, объем выборки влияет на изменчивость: чем больше п, тем меньше делитель. Во-вторых, даже подсчитав С, мы все еще должны определить,