Психология развития: методы исследования - страница 53
Весьма оригинальное решение вопроса конструктной валидности предложили Кемпбелл и Фиске (Campbell & Fiske, 1959), разработавшие матрицу «свойства X методы» (СМ). Использование матрицы СМ подразумевает анализ корреляций между предполагаемыми свойствами или конструктами, каждый из которых измеряется при помощи разных методов. В примере, проиллюстрированном на рис. 4.1, исследуется три свойства, каждое из которых оценивается при помощи трех методов, результатом чего является 9 показателей (А1,А2 и т. д.), составляющих массив таблицы. Конвергентную валидность демонстрировали бы достаточно высокие коэффициенты корреляции между показателями каждого столбца, то есть показателями, которые, как предполагается, характеризуют один и тот же конструкт и отличаются только методами, посредством которых они были получены. Дивергентную валидность демонстрировали бы низкие коэффициенты корреляции между любыми показателями, не попадающими в один столбец. Особенно интересны в этом отношении корреляции между показателями каждой строки — то есть, показателями, полученными при использовании одного и того же метода оценки. Иногда положительные корреляции между результатами обусловлены только методическим сходством заданий, а не характером измеряемых параметров. К примеру, в ряде тестов требуется быстрая реакция в условиях ограничения времени; тогда, что бы ни измеряли тесты, испытуемые, чувствующие себя в такой обстановке более уверенно, справятся с заданиями лучше. О корреляциях, являющихся результатом частичного совпадения методов, говорят, что они отражают дисперсию общности методов. Матрица СМ позволяет определить вклад дисперсии общности методов во все полученные корреляционные связи.
Как следует из вышесказанного, конструктная, как и критериальная валидность в большинстве случаев оценивается через проверку ожидаемых корреляций между результатами измерений. Однако между этими двумя видами валидности имеются существенные различия. Критериальная валидность обычно оценивается по какому-то одному внешнему показателю, например школьной успеваемости, в отношении которого мы хотим сделать прогноз; конструктная же валидность оценивается по целой системе предполагаемых взаимосвязей. Цель определения критериальной валидности, как правило, — в прагматическом прогнозе; цель определения конструктной валидности — валидизация лежащей в основе теста теории. Поэтому то, что последняя из рассмотренных форм валидности носит то же название, что и одна из форм валидности эксперимента, о которой рассказывалось в главе 2, не случайно (хотя и может смутить читателя). В обоих случаях сутью вопроса является теоретическая обоснованность: в одном — в отношении измерения, в другом — в отношении исследования в целом.
Надежность
Стандартизованный тест должен обладать не только валидностью, но и удовлетворять критерию надежности. Вопрос надежности в его применении к тестам также довольно очевиден: Согласованы ли результаты измерения данным тестом? Предположим, что мы даем одному ребенку IQ -тест несколько раз подряд, а затем сравниваем результаты. Если они близки, тест обладает хорошей надежностью; значительный разброс результатов свидетельствовал бы о недостаточной надежности.
Пример с IQ иллюстрирует одну из основных форм надежности — ретестовую надежность. Существует два способа оценки ретестовой надежности. Один — дать один и тот же тест дважды. Однако понятно, что если тесты одинаковы, ребенок может вспомнить свои ответы, а это приведет к искусственному завышению надежности (это также может привести к занижению надежности, если ребенок воспримет повторное предъявление теста как сигнал к изменению своих ответов). Дабы избежать этой проблемы, ретестовую надежность иногда оценивают с использованием взаимозаменяемых форм теста. Как следует из названия, такой подход требует наличия двух разных, но эквивалентных версий теста, при этом один вариант предъявляется в момент 1, а другой — в момент 2. Вновь высокая согласованность ответов будет свидетельствовать о высокой надежности.