Последнее различие касается обстановки проведения исследования. Исследования младенчества проводились в домашних условиях и были направлены в основном на изучение естественного поведения в естественных ситуациях. Суть исследований старших детей заключается преимущественно в предъявлении заданий в некоем лабораторном контексте. Как явствует из протоколов книги «Число», процедура все же может напоминать игру, а не тестирование, а взаимодействие взрослого с ребенком может быть похожим скорее на непринужденный разговор, а не школьный опрос. Однако факт остается фактом — оценивается поведение в экспериментально созданных ситуациях решения задач, а не спонтанная когнитивная деятельность. В дальнейшем мы еще вернемся к этому вопросу.
Рассмотрим еще несколько примеров, иллюстрирующих пиажстианские задания на сохранение числа. Замечу прежде, что Пиаже изучал сохранение не только
Вставка 11.2----------------------------------------------------------------------------------------------------------------
Примеры ответов в заданиях Пиаже на сохранение веса
СЬЮЗ (6;6) изучает два шарика: «Конечно же, они весят одинаково. - А если раскатать один из них, будет ли он весить столько же? - Нужно проверить». Один из шариков раскатывают: «Нет, шарик довольно тяжелый, но тот весит немного больше, вы его раскатали, и поэтому он должен весить больше. - А можно его обратно превратить в шарик? - Да. - Он станет больше или меньше? - Я не знаю; а-а, он будет таким же, потому что он уже был шариком. - В каждом из них одинаковое количество глины? - Да. - А весят они одинаково? - Нет».
ФОГ (9;9) "Они весят одинаково. Это одинаковые шарики, вы просто вытянули один из них. - Изменился ли вес, когда я раскатал шарик? - Сначала он был круглый, а теперь продолговатый, но это та же глина; вы ничего не отщипнули. - А могу я опять скатать это в шарик, который будет весть столько же, сколько и раньше? - Конечно, можете, если не добавите глины». Источник: The Child's Construction of Quantities (pp. 24, 43}, J. Piaget & B. Inhelder, 1974, New York: Basic Books.
числа, но и многих других количественных параметров. В действительности, тесты сохранения содержатся в большинстве его книг, посвященных когнитивному развитию в раннем и среднем детстве. Есть исследования сохранения массы, веса и объема; длины, площади и расстояния; времени, скорости и движения. Все они воплощают в себе единый подход: предъявляются два стимула, равные по какому-либо количественному параметру; затем один из стимулов видоизменяется таким образом, что стимулы уже не выглядят равными, а ребенка спрашивают, равны теперь или не равны количественные параметры. Все эти исследования, кроме того, демонстрируют переход от отсутствия сохранения, обусловленного опорой на перцептивные признаки, к сохранению, основанному на логическом рассуждении. Протоколы, представленные во вставке 11.2, иллюстрируют этот переход в отношении сохранения веса.
Сохранение — это лишь одно из десятков логических и физических понятий, которые со своими сотрудниками изучал Пиаже. Ограничимся кратким описанием двух из них. Первый — сложение классов: принцип, согласно которому подкласс не может быть больше, чем класс более высокого порядка. Сложение классов — это, к примеру, понимание того, что маков не может быть больше, чем цветов, а уток — больше, чем птиц. Обе эти задачи, в действительности, были включены в проводившиеся Пиаже исследования классификации (Inhelder & Piaget, 1964; Piaget & Szeminska, 1952). Во вставке 11.3 приведен третий пример. Стимульным материалом являются деревянные бусины, большая часть которых — коричневые, а две — белые. Ответы 6-летней Бис свидетельствуют о том, что сложение классов, как и сохранение, — этс еще одно базовое понятие, которое не присутствует с рождения, а должно развиться.
Помимо классификации в своих исследованиях Пиаже уделял внимание и пониманию ребенком отношений между величинами. Особый интерес представляет понятие транзитивности. Транзитивность отражается в рассуждениях следующего рода: если, по какому-либо количественному параметру,