Выбор статистического показателя
Для многих студентов слово «статистика» ассоциируется с зазубриванием формул и бесконечными часами утомительных подсчетов. В действительности профессиональный исследователь если и может воспроизвести, то не более нескольких формул и тратит на расчеты совсем немного времени. В этом нет необходимости: формулы есть в учебниках или заложены в компьютер, а расчеты можно производить на калькуляторе, на компьютере (или предоставить это студенту-лаборанту!). Что значительно важнее, это знать, какого рода статистический анализ подходит и информативен для определенного рода данных. При выборе наиболее подходящего статистического показателя учитывается множество факторов. В этом разделе мы рассмотрим три из них: уровень, па котором измеряется зависимая переменная, распределение значений зависимой переменной и план исследования.
Понятие уровня, или шкалы измерения было введено в главе 4. Вспомним, что выделяют четыре уровня измерения: поминальный, или качественное обозначение результатов; порядковый, или ранжирование результатов по некой шкале количественных значений; интервальный, или распределение результатов по шкале количественных значений, которые не только упорядочены, но и равноудалены друг от друга; и уровень отношений, или равномерное упорядочение результатов по шкале количественных значений, имеющей абсолютный нуль.
Уровень измерения является одним из факторов, определяющих, какой из статистических критериев уместнее всего употребить. Некоторые критерии, включая и t, используются только тогда, когда измерение производится на шкале интервалов или шкале отношений. Основание для этого требования станет очевидным при анализе формулы на рис. 7.1. Для расчета f-критерия мы должны произвести ряд арифметических операций с числами — сложить, а затем разделить, чтобы получить среднее, вычесть каждое число из среднего, чтобы' получить показатель отклонения и т. д. Эти операции имеют смысл только в том случае, если числа, с которыми мы работаем, являются точным отображением количественного значения, а не просто названиями или порядковыми номерами. Показатели частоты из табл. 7.1 отвечают указанному требованию, и, следовательно, к этим данным f-критерий применим. Однако f-критерий не подошел бы, если бы наши данные были основаны на описанной ранее рейтинговой шкале. Мы могли бы, к примеру, сложить рейтинговую оценку 5 («крайне агрессивный») с рейтинговой оценкой 1 («совершенно неагрессивный») и получили бы среднее 3 («умеренно агрессивный»). (Вскоре я уточню это замечание. Кроме того, необходимо помнить, что не все специалисты в области теории измерения и статистики сходятся во мнении по вопросу связи между шкалами измерения и статистическими показателями, — см. Cliff, 1993; Michell, 1986.)
Распределение показателей
Использование некоторых статистических критериев связано с определенными предположениями о распределении оцениваемых этим критерием показателей. В частности, так называемые параметрические критерии зависят от определенных
предположений о распределении данных. Это, фактически, и является смыслом термина «параметрический»: статистический анализ зависит от валидности некоторых предположений в отношении «параметров» популяции, к которой принадлежит выборка. Рассмотренный выше t-критерий — пример параметрического критерия; критерий, используемый в дисперсионном анализе (ANOVA), которому посвящен следующий раздел, — еще один пример.
Если говорить более конкретно, в основе использования большинства параметрических критериев лежит два допущения. Первое состоит в том, что показатели распределены по закону нормального распределения. Второе — что дисперсия в сравниваемых группах одинакова. Второе допущение распространяется не на все случаи, но применимо ко многим, часто используемым параметрическим критериям, включая -критерий и F-критерий дисперсионного анализа.
Рис. 7.1. Примеры нормального и ненормального распределения
Мы уже обсуждали понятие дисперсии. Рассмотрим теперь необходимые условия нормального распределения. На рис. 7.1 (а) изображено нормальное распределение. Термин «нормальное распределение* используется в отношении классической колоколообразной кривой, к распределению, в котором среднее, медиана и мода совпадают, а показатели постепенно уменьшаются по мере удаления от этого центра. Рис. 7.1 (б) и (в), напротив, иллюстрируют распределение, явно отличное от нормального.