Пространство. Время. Движение - страница 40
Однако нам еще долго предстоит оставаться в трехмерном пространстве, поэтому стоит отметить, что в предыдущих математических рассмотрениях совершенно не существенно то, что х — координата, a F — сила, а существен только закон преобразования векторов. Поэтому не будет никакой разницы, если мы вместо координаты х подставим x-компоненту любого другого вектора. Иначе говоря, если мы хотим вычислить величину axb>y-a>yb>x, где а и b — векторы, и назвать ее z-компонентой некоторой новой величины c>z, то эта величина будет вектором с. Было бы хорошо для такой связи трех компонент нового вектора с с векторами а и b придумать какое-то математическое обозначение. Для такой связи пользуются обозначением: c=aXb. Таким образом, в дополнение к обычному скалярному произведению в векторном анализе мы получили произведение нового сорта, так называемое векторное произведение. Итак, запись c=aXb это то же самое, что
c>x=a>yb>z-а>гb>у,
c>y=a>zb>x-a>xb>z, (20,9)
с>г=а>хb>у -а>уb>х.
Если переменить порядок векторов а и b, т. е. вместо aXb взять bXa, то знак вектора с при этом изменится, ибо c>zравно b>ха>у-b>уа>х. Векторное произведение поэтому не похоже на обычное умножение, для которого аb=bа. Для векторного произведения bXa=-aXb. Отсюда немедленно следует, что если а=b, то векторное произведение равно нулю, т. е. аXа=0.
Векторное произведение очень хорошо передает свойство вращения, поэтому важно понимать геометрическую связь векторов а, b и с. Связь между компонентами определяется уравнениями (20.9), исходя из которых можно получить следующие геометрические соотношения. Во-первых, вектор с перпендикулярен как к вектору а, так и к вектору b. (Попробуйте вычислить сXа и вы увидите, что в результате получится нуль.) Во-вторых, величина вектора с оказывается равной произведению абсолютных величин векторов b и а, умноженному на синус угла между ними. А куда направлен вектор с? Вообразите, что мы доворачиваем вектор а до вектора b в направлении угла, меньшего 180°; если крутить в ту же сторону болт с право-винтовой резьбой, то он должен двигаться в направлении вектора с. То, что мы берем правовинтовой болт, а не левовинтовой,— простая договоренность, которая постоянно напоминает нам, что в отличие от настоящих, «честных» векторов а и b вектор нового типа аXb по своему характеру слегка отличается от них, ибо строится он искусственно, по особому рецепту. У обычных векторов а и b, кроме того, есть специальное название: мы называем их полярными векторами. Примерами таких векторов служат координата r, сила F, импульс р, скорость v, электрическое поле Е и т. д. Все это обычные полярные векторы. Векторы же, содержащие одно векторное произведение обычных векторов, называются аксиальными векторами, или псевдовекторами. Примерами псевдовекторов, несомненно, могут служить момент силы t и момент импульса L. Кроме того, оказывается, что угловая скорость w, как и магнитное поле В, тоже псевдовектор.
Чтобы расширить наши сведения о математических свойствах векторов, нужно знать все правила их умножения, как векторного, так и скалярного. В настоящий момент нам нужны лишь очень немногие из них, однако в целях полноты мы выпишем все правила с участием векторного произведения. Впоследствии мы будем ими пользоваться. Эти правила таковы:
а) aX (b+c)=aXb+aXc,
б) (aa)Xb=a (aXb),
в) a· (bXc)=(aXb)·c, (20.10)
г) aX (bXc)=b(a·c)—c(a·b),
д) аXа=0,
е) а·(aXb)=0.
§ 2. Уравнения вращения в векторном виде
Возникает вопрос: можно ли с помощью векторного произведения записать какое-нибудь уравнение физики? Да, конечно, с его помощью записываются очень многие уравнения. Сразу же видно, например, что момент силы равен векторному произведению радиус-вектора на силу
t=rXF. (20.11)
Это просто краткая запись трех уравнений: т>x=yF>z-zF>yи т. д. С помощью того же символа можно представить момент количества движения одной частицы в виде векторного произведения вектора расстояния от начала координат (радиус-вектора) на вектор импульса