Пространство. Время. Движение - страница 17

Шрифт
Интервал

стр.

при этом разглядеть внутри M какие-то составные части. Например, распад K-мезона на два пиона происходит по закону (16.11), но бессмысленно считать, что он состоит из 2p, потому что он распадается порой и на Зp!

А поэтому возникает новая идея: нет нужды знать, как тела устроены изнутри; нельзя и не нужно разбираться в том, какую часть энергии внутри частицы можно считать энергией покоя тех частей, на которые она распадется. Неудобно, а порой и невозможно разбивать полную энергию mc>2тела на энергию покоя внутренних частей, их кинетическую и потенциальную энергии; вместо этого мы просто говорим о полной энергии частицы. Мы «сдвигаем начало отсчета» энергий, добавляя ко всему константу m>0c>2, и говорим, что полная энергия частицы равна ее массе движения, умноженной на с>2, а когда тело ос­тановится, его энергия есть его масса в покое, умноженная на с>2.

И наконец, легко обнаружить, что скорость v, импульс Р и полная энергия Е довольно просто связаны между собой. Как это ни странно, формула m=m>0/Ц(l-v>2/c>2) очень редко употребляется на практике. Вместо этого незаменимыми ока­зываются два соотношения, которые легко доказать:

Е>2-P>2c>2=M>0>2c>4 (16.13)

и

Р=E>v/c (16.14)

Глава 17

ПРОСТРАНСТВО - ВРЕМЯ


§ 1. Геометрия пространства-времени

§ 2. Пространственно-временные интервалы

§ 3. Прошедшее, настоящее, будущее

§ 4. Еще о четырехвекторах

§ 5. Алгебра четырехвекторов


§ 1. Геометрия пространства-времени

Теория относительности показывает, что связь между местоположением события и моментом, в какой оно происходит, при измере­ниях в двух разных системах отсчета совсем не такая, как можно было ожидать на основе наших интуитивных представлений. Очень важ­но ясно представить себе связь пространства и времени, возникающую из преобразований Лоренца. Поэтому мы глубже рассмотрим этот вопрос.


Координаты и время (х, y, z, t), измеренные «покоящимся» наблюдателем, преобразуются в координаты и время (х', y', z', t'), измерен­ные внутри «движущегося» со скоростью u космического корабля:

Давайте сравним эти уравнения с уравнением (11.5), которое тоже связывает измерения в двух системах, только одна из них теперь вращается относительно другой

х'=хcosq+ysinq,

у' = ycosq-xsinq, (17.2)

z'=z.

В этом частном случае у Мика и Джо оси х' и x повернуты на угол 0. Но и в том и в другом случае мы замечаем, что «штрихованные» вели­чины — это «перемешанные» между собой «нештрихованные»: новое х' есть смесь х и у, а новое у' — другая смесь x и y.

Проведем следующую аналогию: когда мы глядим на пред­мет, мы различаем его «видимую ширину» и «видимую толщину». Но эти два понятия — «ширина» и «толщина» — отнюдь не основные свойства предмета. Отойдите в сторону, взгляните на предмет под другим углом — видимая ширина и видимая толщина предмета станут другими. Можно написать формулы, позволяющие узнать новые ширину и толщину по известным старым и по углу поворота. Уравнения (17.2) — как раз эти формулы. Можно сказать, что данная толщина есть своего рода «смесь» всех ширин и всех толщин. Если б мы не могли сдвинуться с места, если б мы на данный предмет всегда гля­дели из одного и того же положения, то нам все эти рассуж­дения показались бы неуместными; мы ведь и так всегда видели бы пред собой «настоящую» ширину и «настоящую» толщину и знали бы, что это совершенно разные качества предмета: один связан с углом, под каким виден предмет, другой требует фокусирования глаза и даже интуиции. Они казались бы аб­солютно различными, их незачем было бы смешивать. Только потому, что мы в состоянии обойти вокруг предмета, мы по­нимаем, что ширина и толщина — это разные стороны одного и того же предмета.

Нельзя ли взглянуть на преобразование Лоренца таким же способом? Ведь и здесь перед нами смесь — смесь местополо­жения и момента времени. Из значений координаты и времени получается новая координата. Иначе говоря, в измерениях пространства, сделанных одним человеком, есть с точки зрения другого малая примесь времени. Наша аналогия позволяет высказать следующую мысль: «реальность» предмета, на кото­рый мы смотрим, включает нечто большее (говоря грубо и образно), чем его «ширину» и его «толщину», потому что обе они


стр.

Похожие книги