Пространство. Время. Движение - страница 15
m>w/m>v=Ц(1-u>2/c>2). (16.9).
Перейдем к предельному случаю, когда w стремится к нулю. При очень малых w величины v и u практически совпадут, m>w®m>0, a m>v®m>u. Окончательный результат таков:
Проделайте теперь такое интересное упражнение: проверьте, будет ли выполнено условие (16.9) при произвольных w, когда масса подчиняется формуле (16.10). При этом скорость v, стоящую в уравнении (16.9), можно найти из прямоугольного треугольника
Вы увидите, что (16.9) выполняется тождественно, хотя выше нам понадобился только предел этого равенства при w—>0. Теперь перейдем к дальнейшим следствиям, считая уже, что, согласно (16.10), масса зависит от скорости. Рассмотрим так называемое неупругое столкновение. Для простоты предположим, что из двух одинаковых тел, сталкивающихся с равными скоростями w, образуется новое тело, которое больше не распадается (фиг. 16.4,а).
Фиг. 16.4. Две картины неупругого соударения тел равной массы.
Массы тел до столкновения равны, как мы знаем, m>0/Ц(1- w>2/c>2). Предположив сохраняемость импульса и приняв принцип относительности, можно продемонстрировать интересное свойство массы вновь образованного тела. Представим себе бесконечно малую скорость и, поперечную к скоростям w (можно было бы работать и с конечной скоростью и, но с бесконечно малым значением и легче во всем разобраться), и посмотрим на это столкновение, двигаясь в лифте со скоростью -u. Перед нами окажется картина, изображенная на фиг. 16.4, а. Составное тело обладает неизвестной массой М. У тела 1, как и у тела 2, есть компонента скорости и, направленная вверх, и горизонтальная компонента, практически равная w. После столкновения остается масса М, движущаяся вверх со скоростью u, много меньшей и скорости света и скорости w. Импульс должен остаться прежним; посмотрим поэтому, каким он был до столкновения и каким стал потом. До столкновения он был равен p~=2m>wu, а потом стал р'=M>uu. Но M>uиз-за малости u, по существу, совпадает с М>0. Благодаря сохранению импульса
М>0=2m>w. (16.11)
Итак, масса тела, образуемого при столкновении двух одинаковых тел, равна их удвоенной массе. Вы, правда, можете сказать: «Ну и что ж, это просто сохранение массы». Но не торопитесь восклицать: «Ну и что ж!», потому что сами-то массы тел были больше, чем когда тела неподвижны. Они вносят в суммарную массу М не массу покоя, а больше. Не правда ли, поразительно! Оказывается, сохранение импульса в столкновении двух тел требует, чтобы образуемая ими масса была больше их масс покоя, хотя после столкновения эти тела сами придут в состояние покоя!
§ 5. Релятивистская энергия
Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, оказываются всегда равными
Потом мы продвинулись дальше и обнаружили, что полная энергия тела равна полной его массе, умноженной на с>2. Продолжим эти рассуждения.
Предположим, что наши два тела с равными массами (те, которые столкнулись) можно «видеть» даже тогда, когда они оказываются внутри тела М. Скажем, протон с нейтроном столкнулись, но все еще продолжают двигаться внутри М. Масса тела М, как мы обнаружили, равна не 2m>0>, a 2m>w. Этой массой 2m>wснабдили тело его составные части, чья масса покоя была 2m>0; значит, избыток массы составного тела равен привнесенной кинетической энергии. Это означает, конечно, что у энергии есть инерция. Ранее мы говорили о нагреве газа и показали, что поскольку молекулы газа движутся, а движущиеся тела становятся массивнее, то при нагревании газа и усилении движения молекул газ становится тяжелее. Но на самом деле такое рассуждение является совершенно общим; наше обсуждение свойств неупругого соударения тоже показывает, что добавочная масса появляется всегда, даже тогда, когда она не является