Пространство. Время. Движение - страница 13

Шрифт
Интервал

стр.

(с точки зрения наблюдателя на корабле), а сам корабль имеет скорость и по отношению к Земле. Мы желаем знать, с какой скоростью v>xэто тело движется с точки зрения земного наблюдателя. Впрочем, это тоже не самый общий случай, потому что движение происходит в направ­лении х. Могут быть формулы для преобразования скоростей в направлении у или в любом другом; если они будут нужны, их всегда можно вывести. Внутри корабля скорость тела равна v>x>' . Это значит, что перемещение х' равно скорости, умноженной на время:

x'=v>x·>'t'. (16.3)


Остается только подсчитать, какие у тела значения х и t с точки зрения внешнего наблюдателя, если х' и t' связаны соотношением (16.3). Подставим (16.3) в (16.2) и получим


Но здесь х выражено через t'. А скорость с точки зрения внеш­него наблюдателя — это «его» расстояние, деленное на «его» время, а не на время другого наблюдателя! Значит, надо и время подсчитать с его позиций


А теперь разделим х на t. Квадратные корни сократятся, останется же

Это и есть искомый закон: суммарная скорость не равна сумме скоростей (это привело бы ко всяким несообразностям), но «подправлена» знаменателем 1+uv/c>2.

Что же теперь будет получаться? Пусть ваша скорость внут­ри корабля равна половине скорости света, а скорость корабля тоже равна половине скорости света. Значит, и u равно >1/>2с, и v равно >1/>2c, но в знаменателе uv равно >1/>4, так что

Выходит по теории относительности, что >1/>2и >1/>2 дают не 1, a >4/>5. Небольшие скорости, конечно, можно складывать, как обычно, потому что, пока скорости по сравнению со скоростью света малы, о знаменателе (1 +uv/с>2) можно забыть, но на больших скоростях положение меняется.


Возьмем предельный случай. Положим, что человек на борту корабля наблюдает, как распространяется свет. Тогда v=c. Что обнаружит земной наблюдатель? Ответ будет такой:

Значит, если что-то движется со скоростью света внутри ко­рабля, то, с точки зрения стороннего наблюдателя, скорость не изменится, она по-прежнему будет равна скорости света! Это именно то, ради чего в первую очередь предназначал Эйн­штейн свою теорию относительности.

Конечно, бывает, что движение тела не совпадает по на­правлению с равномерным движением корабля. Например, тело движется «вверх» со скоростью v>y>' по отношению к ко­раблю, а корабль движется «горизонтально». Проделывая такие же манипуляции (только х надо заменить на у), получаем


y=y'=v>y>'t', так что при v>x>'=0

Итак, боковая скорость тела уже не v>y>' , a v>y>'Ц(1-u>2>2). Этот результат мы получили, пользуясь формулами преобра­зований. Но он вытекает и прямо из принципа относительности по следующей причине (всегда бывает полезно докопаться до первоначальной причины). Мы уже раньше рассуждали (см. фиг. 15.3) о том, как могут работать движущиеся часы; свет ка­жется распространяющимся наискось со скоростью с в непо­движной системе, в то время как в движущейся системе он просто движется вертикально с той же скоростью. Мы нашли, что верти­кальная, компонента скорости в неподвижной системе меньше скорости света на множитель Ц(1-u>2>2) [см. уравнение (15.3)]. Пусть теперь материальная частица движется в тех же «часах» взад-вперед со скоростью, равной 1/n скорости света (фиг. 16.1).

Фиг.16.1.Траектории светового луча и частицы внутри движущихся часов.

Пока частица пройдет туда и обратно, свет пройдет этот путь ровно nраз (n — целое число). Значит, каждое тиканье «часов с частицей» совпадет с n-м тиканьем «световых часов». Этот факт должен остаться верным и тогда, когда тело движется, потому что физическое явление совпадения остается совпа­дением в любой системе. Ну а поскольку скорость с>уменьше скорости света, то скорость v>yчастицы должна быть меньше соответствующей скорости в том же отношении (с квадратным корнем)! Вот почему в любой вертикальной скорости появ­ляется корень.

§ 4. Релятивистская масса

Из предыдущей главы мы усвоили, что масса тела растет с увеличением его скорости. Но никаких доказательств этого, похожих на те рассуждения с часами, которыми мы обосновали замедление времени, мы не привели. Сейчас, однако, мы можем доказать, что (как следствие принципа относительности и прочих разумных соображений) масса должна изменяться именно таким образом. (Мы должны говорить о «прочих сооб­ражениях» по той причине, что нельзя ничего доказать, нельзя надеяться на осмысленные выводы, не опираясь на какие-то законы, которые предполагаются верными.) Чтобы не изучать


стр.

Похожие книги