Придирки оксфордского прохожего - страница 2

Шрифт
Интервал

стр.

нальный паттерн, содержащий много кратных точек». Геометрическое место HPL практически полностью с ней совпало.

Основные результаты ожидались из допущения, что (E + R) есть функция от , но так как оппоненты этой теоремы решительно преуспели в доказательстве того, что переменная даже не входит в данную функцию, то на получение реального значение π этим методом не осталось никакой надежды.


III. Метод

Это была изнуряющая процедура вытягивания численного выражения пая рядом соглашений через нескончаемые голосования [16]. Получаемый таким способом ряд производил впечатление сходящегося, однако после всех вычетов результат всегда оказывался отрицательным, что, разумеется, делало процедуру вытягивания невозможной.

Следующая теорема ведёт своё происхождение от радикального ряда в Арифметической Прогрессии: обозначим сам ряд как АР, а его сумму как (А.Р.)S. Было найдено, что функция (А.Р.)S. в различных формах участвует в вышеописанной процедуре. Тогда эксперимента решили преобразовать ()S. в какую-нибудь новую систему счисления, ведь первоначально, на протяжении длинного ряда... семестров, она существовала то в , то в системах счисления; отражённая в этих системах, наша функция предоставила нам много красивых выражений. Ныне она переведена в десятеричный вид [17].

Произведя эти преобразования, процедуру разделения голосов повторили, но с же отрицательным результатом, после чего попытки были оставлены, хоть и не без надежды на будущих математиков, которым после привлечения некоторого количества прежде не определившихся постоянных, возведённых во вторую степень, возможно, удастся достичь положительного результата.


IV. Исключение J

Давно было ясно, что основное препятствие к вычислению π — это присутствие J. В предыдущую эпоху развития математики ради устранения J не ограничились бы даже двумя секущими на прямоугольной площади, а произвели бы вдобавок отделение меньшей части — так называемая процедура устранения по произволу, которая ныне считается не вполне законной.

Ныне же одни предлагали исключить J на основании процедуры, состоящей из двух действий, одно из которых называется «получением достатка», а второе —  «обращением остатка»; до её применения, однако, дело не дошло, поскольку J сделались нерешительными. Другие сторонники данного метода предпочли бы, чтобы J исключались [18]. Получившим классическое образование едва ли стоит напоминать, что есть аблятив от [19] и что это прекрасное и выразительное словцо знаменует желание устранить J через принудительное религиозное освидетельствование.

Затем предлагалось устранить J посредством [20]. Главное возражение по поводу этой процедуры заключалось в том, что в результате J возводится в неоправданно высокую степень, π в конечном счёте приобретает иррациональное значение [21].

Для оценки π предлагались и другие процедуры, которых нам нет нужды здесь рассматривать. Согласно одной из них, π должна считаться заданной величиной: эта теория была поддержана многими выдающимися мужами в Кембридже и кое-где ещё, но стоило её применить, как оказалось, что J отвечают отрицательным знаком — а это, разумеется, не способствовало делу.

Теперь мы приступаем к описанию новейшего метода, который увенчался блистательным и неожиданным успехом и который может быть назван как


V. Вычисление под Давлением

Математики уже исследовали геометрическое место точек HPL и ввели эту функцию в свои расчёты. Это, однако, не способствовало получению столь чаемого численного значения — даже при переносе HPL в противоположную сторону уравнения с изменением знака. Процедура, которую мы собираемся описать, заключается главным образом в подстановке G на место и в приложении давления.

Пусть функция φ(HGL) [22] развёрнута в ряд; допустим, что его сумма есть абсолютно твёрдое тело, двигающееся фиксированной прямой. Буквой µ обозначим коэффициент морального обязательства, а буквой е — целесообразность. Буквой F обозначим Силу, действующую равным образом во всех направлениях и изменяющуюся обратно пропорционально


стр.

Похожие книги