Пилотируемые полеты на Луну - страница 15

Шрифт
Интервал

стр.

С целью уменьшения потерь скорости можно применить регулирование в полете соотношения компонентов топлива, которое приводит к значительному выигрышу в весе полезной нагрузки.

Вычисление потерь

Приращение скорости, обеспечиваемое ракетной ступенью, может быть определено путем вычитания из характеристической скорости гравитационных, аэродинамических потерь и потерь на управление[3]

В табл. 1 представлены типичные значения потерь для ракеты-носителя Saturn V применительно к траектории полета на Луну.

Таблица 1

Несовпадение вектора тяга двигательной установки с вектором скорости полета ракеты приводит к потерям на управление. Эти потери уменьшают скорость полета ракеты-носителя Saturn V на 187,5 м/сек. Однако, если бы траектория была направлена против вектора гравитации, гравитационные потери были бы значительно больше 187,5 м/сек.

Программное изменение соотношения компонентов топлива

Во время активного участка полета второй ступени ракеты-носителя Saturn V производится 20%-ное ступенчатое изменение соотношения компонентов топлива, вызывающее соответственно уменьшение тяги и увеличение удельного импульса.

При одинаковых заправках топлива характеристическая скорость ступени одинакова для полетов с постоянным соотношением компонентов топлива и программным изменением этого соотношения. Таким образом, улучшение характеристик при программном изменении соотношения компонентов достигается путем уменьшения потерь скорости, а не вследствие увеличения характеристической скорости. В основном, программное изменение соотношения компонентов уменьшает потери благодаря тому, что при этом топливо более быстро расходуется на начальном участке траектории и затраты энергии на подъем топлива в поле тяготения уменьшаются.

Угол наклона траектории полета ракеты-носителя Saturn V на активном участке имеет вид экспоненциальной кривой (рис. 13.1).

Эффект ступенчатого изменения соотношения компонентов топлива при полете по такой траектории не поддается простому наглядному объяснению, однако можно сказать, что большая тяга желательна, когда движение ракеты близко к вертикальному, а большой удельный импульс желателен при движении ракеты, близком к горизонтальному. Рассмотрим пример, позволяющий показать, почему оптимальное значение удельного импульса сильно зависит от угла наклона траектории полета.

Рис. 13.1. Программа изменения угла наклона траектории полета ракеты-носителя Saturn V

Полет с постоянным углом наклона траектории

Рассматривая движение ракеты по траектории с постоянным углом наклона в постоянном гравитационном поле, предположим, что тяга, расход топлива и удельный импульс являются линейными ограниченными функциями соотношения компонентов топлива, причем тяга и расход топлива – возрастающие функции, а удельный импульс – убывающая функция.

Задача сводится к выбору такого соотношения компонентов топлива, при котором ракета в конце активного участка будет иметь максимальную скорость.

Если предположить, что потери на управление и преодоление силы аэродинамического сопротивления пренебрежимо малы, а удельный импульс постоянен, то скорость в конце активного участка полета ракеты может быть определена по формуле

Поскольку g0 и ? постоянные величины, уравнение можно проинтегрировать

Для второй ступени ракеты-носителя Saturn V можно установить, что меньший удельный импульс обеспечивает максимум конечной скорости в случае вертикального полета, так как большая тяга и меньшая продолжительность активного участка позволяют уменьшить гравитационные потери, но при горизонтальном полете член, характеризующий гравитационные потери, равен нулю, независимо от времени работы двигателей, и в этом случае желателен более высокий удельный импульс. Таким образом для какого-то промежуточного значения угла ? между 0 и 90° скорость в конце активного участка не зависит от величины удельного имлульса. Это значение можно определить по формуле граничные значения линейных функций удельного импульса и секундного расхода.

Для второй ступени ракеты-носителя Saturn V по уравнению (13;5) получим ?=3; таким образом, если угол наклона траектории меньше 3°, то желательно иметь большой удельный импульс при меньшей тяге, а если ?>3° снижение удельного импульса при увеличении тяги позволяет увеличить полезную нагрузку.


стр.

Похожие книги