Паутина жизни. Новое научное понимание живых систем - страница 67
Когда Мандельбро в конце 70-х годов анализировал различные математические проявления множеств Жулиа, пытаясь классифицировать их бесконечное многообразие, он открыл очень простой способ создания единого изображения на комплексной плоскости, которое может служить своеобразным каталогом всех возможных множеств Жулиа. Это изображение, с тех пор ставшее основным визуальным символом новой математики сложных систем, называется множеством Мандельбро (рис. 6-19). Это просто совокупность на комплексной плоскости всех точек с константой с, для которых соответствующие множества Жулиа представляют единые связные области. Чтобы построить множество Мандельбро, таким образом, следует построить отдельное множество Жулиа для каждой точки с на комплексной плоскости и определить, является ли это конкретное множество связным или разделенным. Например, среди множеств Жулиа, изображенных на рис. 6-18, три набора в верхнем ряду и один в центре нижнего ряда — связны (т. е. каждое из них представляет собой единую фигуру), в то время как крайние наборы в нижнем ряду разделены (т. е. состоят из нескольких отдельных областей).
Рис. 6-19. Множество Мандельбро. Из PeitgenandRichter (1986)
Генерирование множеств Жулиа для нескольких тысяч значений с, каждое из которых складывается из тысяч точек, требующих многократных итераций, представляется невыполнимой задачей. Однако к счастью, существует мощная теорема, сформулированная самим Гастоном Жулиа, которая значительно сокращает количество необходимых шагов35. Чтобы выяснить, является ли конкретное множество Жулиа связным или разделенным, следует просто произвести итерацию для начальной точки z = 0. Если после нескольких итераций значение в этой точке остается конечным, т. е. имеет некоторый конечный предел, то множество Жулиа будет связным, каким бы фантастичным оно ни выглядело; если же это значение стремится к бесконечности, множество всегда будет разъединенным. Поэтому, чтобы построить множество Мандельбро, необходимо выполнить итерацию лишь в одной точке, z = 0, для каждого значения с. Иными словами, для построения множества Мандельбро требуется такое же количество шагов, как и для множества Жулиа.
В то время как существует бесконечное количество множеств Жулиа, множество Мандельбро уникально. Эта странная фигура представляет собой самый сложный математический объект из всех когда-либо изобретенных. И хотя правила его построения очень просты, многообразие и сложность, которые он проявляет при ближайшем рассмотрении, просто невероятны. Когда множество Мандельбро строится на фиксированной координатной сетке, на экране компьютера появляются два диска: меньший имеет относительно круглую форму, больший отдаленно напоминает очертания сердца. На каждом из двух дисков выделяется несколько небольших дискообразных наростов, расположенных вдоль границ диска, а дальнейшее повышение разрешения выявляет изобилие все более мелких наростов, напоминающих колючие шипы.
Начиная с этого момента, богатство образов, выявляемых расширением границ множества (т. е. повышением разрешающей способности вычислений), почти не поддается описанию. Такое путешествие вглубь множества Мандельбро, особенно зафиксированное на видеопленке, представляет собой незабываемый опыт36. По мере того как масштаб съемки растет и изображение границы укрупняется, кажется, что прорастают побеги и усики, которые, после очередного увеличения, растворяются в огромном количестве форм — спиралей внутри спиралей, морских коньков и водоворотов, снова и снова повторяющих одни и те же паттерны (рис. 6-20).
Математика сложных систем
Рис. 6-20.
Стадии путешествия вглубь множества Мандельбро. На каждой фотографии область последующего увеличения помечена белой рамкой.
Из PeitgenandRichter (1986)
На каждой стадии изменения масштаба этого фантастического путешествия — в ходе которого мощности сегодняшних компьютеров обеспечивают 100 000 000-кратное увеличение! — картина напоминает причудливо изрезанное побережье; образы, изобилующие в узорах этого «побережья», удивительно напоминают органические существа во всей их бесконечной сложности. И на каждом шагу нас ждет головокружительное открытие: мы снова и снова обнаруживаем мельчайшую копию всего множества Мандельбро, глубоко запрятанную в структуре его границы.