См. ниже, ее. 238–239,252.
Lovelock (1991), р. 62.
См. там же, p. 62ff, см. также Harding (1994).
Harding (1994).
См. Lovelock (1991), pp. 70–72.
См. Schneider and Boston (1991).
Jantsch(1980).
Глава 6 Математика сложных систем
Взгляд на живые системы как на самоорганизующиеся сети, все компоненты которых взаимосвязаны и взаимозависимы, в процессе развития истории философии и науки неоднократно высказывался в той или иной форме. Однако подробные модели самоорганизующихся систем предложены лишь недавно, когда стал доступен новый математический инструментарий, позволивший ученым смоделировать нелинейные характеристики взаимосвязанности сетей. Открытие этой новой математики сложности все чаще признается учеными одним из важнейших событий XX века.
Теории и модели самоорганизации, описанные в предыдущих главах, имеют дело с весьма сложными системами, состоящими из тысяч взаимозависимых химических реакций. За последние три десятилетия появилось множество новых концепций и технологий для работы с феноменами такой огромной сложности; на базе этих концепций в настоящее время начинает формироваться согласованная математическая структура. И все же четкого названия этой новой математики пока нет. По научно-популярной литературе она известна как математика сложных систем, более технические названия звучат как теория динамических систем, системная динамика, комплексная динамика или нелинейная динамика. Вероятно, наиболее широко используется термин теория динамических систем.
Чтобы избежать путаницы, полезно помнить, что теория динамических систем не относится к физическим феноменам, это — математическая теория, концепции и методы которой применимы к достаточно широкому диапазону явлений. То же касается теории хаоса и теории фракталов — важных разделов теории динамических систем.
Новая математика (мы рассмотрим это подробно) является математикой взаимоотношений и паттернов. Имея скорее качественный, чем количественный характер, она тем самым обусловливает сдвиг акцента, что характерно для системного мышления — от объектов к взаимоотношениям, от количества к качеству, от материи к паттерну. Развитие мощных высокоскоростных компьютеров сыграло решающую роль в освоении сложных систем. Математики сегодня могут решать сложные уравнения, которые раньше не поддавались решению, и прослеживать решения в виде кривых на графике. Таким способом они обнаружили новые качественные паттерны поведения этих сложных систем, новый уровень порядка, лежащий в основе кажущегося хаоса.
Классическая наука
Чтобы оценить новизну новой математики сложных систем, представляется интересным сопоставить ее с математикой классической науки. Наука, в современном понимании этого термина, появилась в конце XVI века, когда Галилео Галилей первым начал ставить систематические эксперименты, используя математический язык для формулирования открытых им законов природы. В те времена науку все еще называли «натуральной философией», и когда Галилей говорил «математика», он имел в виду геометрию. «Философия, — писал он, — записана в той Великой книге, которая всегда перед нашим взором; но мы не сможем понять ее, если сначала не выучим ее язык и те символы, которыми она написана. Этот язык — математика, а символы — это треугольники, окружности и другие геометрические фигуры»1.
Галилео унаследовал эту точку зрения от философов античной Греции, которые были склонны геометризировать все математические проблемы и искать ответы в рамках геометрических фигур. Есть свидетельства, что над входом в Академию Платона, главную греческую школу науки и философии на протяжении девяти столетий, была высечена надпись: «Да не войдет сюда несведущий в геометрии».
Несколько веков спустя совершенно иной подход к решению математических проблем, известный как алгебра, был разработан в Персии мусульманскими философами, которые, в свою очередь, переняли его у индийских математиков. Название происходит от арабского al-jabr(«связывать вместе») и относится к процессу сокращения числа неизвестных величин путем связывания их вместе в уравнения. В элементарной алгебре буквы в уравнениях — взятые обычно из начала алфавита — означают различные постоянные числа. Хорошо известным примером, который большинство читателей помнит со школьной скамьи, служит уравнение